找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: protocol
21#
發(fā)表于 2025-3-25 04:34:45 | 只看該作者
22#
發(fā)表于 2025-3-25 09:38:41 | 只看該作者
End-to-End Active Speaker Detection,by utilizing audiovisual data but relying exclusively on audio annotations. We achieve this by modelling the direct relationship between the audio signal and the possible sound sources (speakers), as well as introducing a contrastive loss.
23#
發(fā)表于 2025-3-25 15:43:28 | 只看該作者
24#
發(fā)表于 2025-3-25 16:26:59 | 只看該作者
Adaptive Fine-Grained Sketch-Based Image Retrieval,implify the MAML training in the inner loop to make it more stable and tractable. (2) The margin in our contrastive loss is also meta-learned with the rest of the model. (3) Three additional regularisation losses are introduced in the outer loop, to make the meta-learned FG-SBIR model more effective
25#
發(fā)表于 2025-3-25 23:46:14 | 只看該作者
,Quantized GAN for?Complex Music Generation from?Dance Videos,, we assess the generative qualities of our proposal against alternatives. The attained quantitative results, which measure the music consistency, beats correspondence, and music diversity, demonstrate the effectiveness of our proposed method. Last but not least, we curate a challenging dance-music
26#
發(fā)表于 2025-3-26 00:50:37 | 只看該作者
,Uncertainty-Aware Multi-modal Learning via?Cross-Modal Random Network Prediction,training process. From a technical point of view, CRNP is the first approach to explore random network prediction to estimate uncertainty and to combine multi-modal data. Experiments on two 3D multi-modal medical image segmentation tasks and three 2D multi-modal computer vision classification tasks
27#
發(fā)表于 2025-3-26 07:05:05 | 只看該作者
,Localizing Visual Sounds the?Easy Way,or improved precision. Our simple and effective framework achieves state-of-the-art performance on two popular benchmarks, Flickr SoundNet and VGG-Sound Source. In particular, we improve the CIoU on Flickr SoundNet from 76.80% to 83.94%, and on VGG-Sound Source from 34.60% to 38.85%. Code and pretra
28#
發(fā)表于 2025-3-26 08:54:54 | 只看該作者
,Remote Respiration Monitoring of?Moving Person Using Radio Signals,mework to capture the mapping from radio signals to respiration while excluding the GM components in a self-supervised manner. We test the proposed model based on the newly collected and released datasets under real-world conditions. This study is the first realization of the nRRM task for moving/oc
29#
發(fā)表于 2025-3-26 13:35:08 | 只看該作者
30#
發(fā)表于 2025-3-26 18:09:46 | 只看該作者
Telepresence Video Quality Assessment,-a-kind online video quality prediction framework for live streaming, using a multi-modal learning framework with separate pathways to compute visual and audio quality predictions. Our all-in-one model is able to provide accurate quality predictions at the patch, frame, clip, and audiovisual levels.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥阳县| 汉中市| 米易县| 潼南县| 晋城| 故城县| 通辽市| 鸡西市| 五大连池市| 盐山县| 玉林市| 淳化县| 霍山县| 楚雄市| 阳春市| 正定县| 内乡县| 鄂尔多斯市| 大石桥市| 临潭县| 白水县| 元氏县| 浦东新区| 甘谷县| 敖汉旗| 葫芦岛市| 芦山县| 曲沃县| 诸暨市| 正安县| 惠水县| 神池县| 乌拉特后旗| 内江市| 谢通门县| 萨嘎县| 大宁县| 台中县| 斗六市| 康乐县| 镇坪县|