找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: 頻率
41#
發(fā)表于 2025-3-28 14:44:15 | 只看該作者
Beyond Monocular Deraining: Stereo Image Deraining via Semantic Understanding,multi-view information respectively. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
42#
發(fā)表于 2025-3-28 22:33:00 | 只看該作者
DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural Networks,s the daunting task of aggressively quantizing lightweight networks such as MobileNetV1, MobileNetV2, and ShuffleNetV2. DBQ achieves state-of-the art results with minimal training overhead and provides the best (pareto-optimal) accuracy-complexity trade-off.
43#
發(fā)表于 2025-3-29 00:26:49 | 只看該作者
All at Once: Temporally Adaptive Multi-frame Interpolation with Advanced Motion Modeling,uracy when complex motion segments are encountered. Results on the Adobe240 dataset show that the proposed method generates visually pleasing, temporally consistent frames, outperforms the current best off-the-shelf method by 1.57?dB in PSNR with 8 times smaller model and 7.7 times faster. The propo
44#
發(fā)表于 2025-3-29 05:59:08 | 只看該作者
A Broader Study of Cross-Domain Few-Shot Learning, as crop disease images, but additionally those that present with an increasing dissimilarity to natural images, such as satellite images, dermatology images, and radiology images. Extensive experiments on the proposed benchmark are performed to evaluate state-of-art meta-learning approaches, transf
45#
發(fā)表于 2025-3-29 07:29:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:17:38 | 只看該作者
47#
發(fā)表于 2025-3-29 18:49:59 | 只看該作者
SemifreddoNets: Partially Frozen Neural Networks for Efficient Computer Vision Systems,antages of a fully configurable model for many use cases. Furthermore, our system uses repeatable blocks, therefore it has the flexibility to adjust model complexity without requiring any hardware change. The hardware implementation of SemifreddoNets provides up?to an order of magnitude reduction in
48#
發(fā)表于 2025-3-29 20:45:18 | 只看該作者
49#
發(fā)表于 2025-3-30 01:16:19 | 只看該作者
50#
發(fā)表于 2025-3-30 05:03:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全椒县| 丰镇市| 怀宁县| 全椒县| 商洛市| 宁武县| 临邑县| 长岭县| 寿阳县| 增城市| 苗栗市| 乐陵市| 托里县| 抚远县| 兴业县| 金平| 定远县| 天台县| 蓬安县| 苏州市| 申扎县| 东城区| 固安县| 桓台县| 南丹县| 读书| 洪洞县| 平乡县| 本溪市| 德兴市| 贺兰县| 桂平市| 新田县| 清新县| 云阳县| 毕节市| 读书| 台山市| 石家庄市| 靖州| 雷山县|