找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: Confer
41#
發(fā)表于 2025-3-28 16:42:15 | 只看該作者
42#
發(fā)表于 2025-3-28 21:18:54 | 只看該作者
43#
發(fā)表于 2025-3-29 01:26:20 | 只看該作者
44#
發(fā)表于 2025-3-29 05:56:06 | 只看該作者
45#
發(fā)表于 2025-3-29 08:41:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:52:14 | 只看該作者
Deep Image Clustering with Category-Style Representation, propose a novel deep image clustering framework to learn a category-style latent representation in which the category information is disentangled from image style and can be directly used as the cluster assignment. To achieve this goal, mutual information maximization is applied to embed relevant i
47#
發(fā)表于 2025-3-29 17:42:25 | 只看該作者
48#
發(fā)表于 2025-3-29 22:16:18 | 只看該作者
Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets,tructural information exploitation, which leads to inaccurate spatial layout, discontinuous surface, and ambiguous boundaries. In this paper, we tackle this problem in three aspects. First, to exploit the spatial relationship of visual features, we propose a structure-aware neural network with spati
49#
發(fā)表于 2025-3-30 01:19:23 | 只看該作者
BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation,se a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilate
50#
發(fā)表于 2025-3-30 08:05:16 | 只看該作者
Hard Negative Examples are Hard, but Useful,ser together in an embedding space than representations of images from different classes. Much work on triplet losses focuses on selecting the most useful triplets of images to consider, with strategies that select dissimilar examples from the same class or similar examples from different classes. T
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商洛市| 郎溪县| 阳春市| 托克逊县| 呼伦贝尔市| 图们市| 开化县| 荔波县| 泗阳县| 玉屏| 宿州市| 基隆市| 赣州市| 大厂| 紫金县| 阿拉尔市| 吴桥县| 门头沟区| 全州县| 南漳县| 永仁县| 呼伦贝尔市| 克拉玛依市| 辽阳市| 墨脱县| 定兴县| 兴宁市| 常州市| 扶沟县| 曲靖市| 高淳县| 小金县| 郴州市| 衡南县| 蓝田县| 民勤县| 楚雄市| 米脂县| 山阳县| 福鼎市| 明水县|