找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復制鏈接]
樓主: 歸納
41#
發(fā)表于 2025-3-28 15:56:49 | 只看該作者
Snap Angle Prediction for 360, Panoramasage may enable content-aware projection with fewer perceptible distortions. Whereas existing approaches assume the viewpoint is fixed, intuitively some viewing angles within the sphere preserve high-level objects better than others. To discover the relationship between these optimal . and the spheri
42#
發(fā)表于 2025-3-28 20:08:02 | 只看該作者
43#
發(fā)表于 2025-3-28 23:38:52 | 只看該作者
DF-Net: Unsupervised Joint Learning of Depth and Flow Using Cross-Task Consistencyled video sequences. Existing unsupervised methods often exploit brightness constancy and spatial smoothness priors to train depth or flow models. In this paper, we propose to leverage geometric consistency as additional supervisory signals. Our core idea is that for rigid regions we can use the pre
44#
發(fā)表于 2025-3-29 04:33:04 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:59 | 只看該作者
Transductive Centroid Projection for Semi-supervised Large-Scale Recognitiononal complexity when collaborating with Convolutional Neural Networks. To this end, we design a simple but effective learning mechanism that merely substitutes the last fully-connected layer with the proposed Transductive Centroid Projection (TCP) module. It is inspired by the observation of the wei
46#
發(fā)表于 2025-3-29 14:49:52 | 只看該作者
47#
發(fā)表于 2025-3-29 17:45:10 | 只看該作者
Into the Twilight Zone: Depth Estimation Using Joint Structure-Stereo Optimizationenoising approach – which we show to be ineffective for stereo due to its artefacts and the questionable use of the PSNR metric, we propose to instead rely on structures comprising of piecewise constant regions and principal edges in the given image, as these are the important regions for extracting
48#
發(fā)表于 2025-3-29 21:26:44 | 只看該作者
Recycle-GAN: Unsupervised Video Retargetingative to a domain, i.e., if contents of John Oliver’s speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert’s style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style
49#
發(fā)表于 2025-3-30 02:46:44 | 只看該作者
50#
發(fā)表于 2025-3-30 06:23:56 | 只看該作者
Open Set Domain Adaptation by Backpropagatione proposed for closed-set scenario, where the source and the target domain completely share the class of their samples. However, in practice, a target domain can contain samples of classes that are not shared by the source domain. We call such classes the “unknown class” and algorithms that work wel
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
溆浦县| 万宁市| 名山县| 新干县| 双城市| 乌鲁木齐县| 咸丰县| 扎囊县| 蒲城县| 固镇县| 瑞安市| 琼结县| 钟山县| 通化市| 奈曼旗| 涟源市| 晋城| 吉水县| 耒阳市| 墨竹工卡县| 井冈山市| 南木林县| 双流县| 台东县| 绥化市| 南雄市| 台北市| 扬中市| 开阳县| 维西| 庆安县| 黄骅市| 金寨县| 汝城县| 玛纳斯县| 芮城县| 霸州市| 永善县| 雷山县| 西和县| 中宁县|