找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復制鏈接]
樓主: 馬用
31#
發(fā)表于 2025-3-26 21:09:12 | 只看該作者
Semi-dense 3D Reconstruction with a Stereo Event Camerahas no special requirements on either the motion of the stereo event-camera rig or on prior knowledge about the scene. Experiments demonstrate our method can deal with both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event data image representations.
32#
發(fā)表于 2025-3-27 02:16:49 | 只看該作者
Conference proceedings 2018, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstructi
33#
發(fā)表于 2025-3-27 09:15:39 | 只看該作者
34#
發(fā)表于 2025-3-27 12:47:39 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:47 | 只看該作者
Diverse Image-to-Image Translation via Disentangled Representationsy reduces mode collapse. To handle unpaired training data, we introduce a novel cross-cycle consistency loss. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks. We validate the effectiveness of our approach through extensive evaluation.
36#
發(fā)表于 2025-3-27 21:00:15 | 只看該作者
37#
發(fā)表于 2025-3-28 00:00:09 | 只看該作者
Convolutional Networks with Adaptive Inference Graphsove directly to a layer that can distinguish fine-grained differences? Currently, a network would first need to execute sometimes hundreds of intermediate layers that specialize in unrelated aspects. Ideally, the more a network already knows about an image, the better it should be at deciding which
38#
發(fā)表于 2025-3-28 03:24:25 | 只看該作者
Progressive Neural Architecture Search based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Dir
39#
發(fā)表于 2025-3-28 07:39:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:07:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
利川市| 界首市| 平谷区| 岗巴县| 巧家县| 宁安市| 南江县| 睢宁县| 永善县| 巫山县| 鄂托克旗| 浪卡子县| 永宁县| 资溪县| 垦利县| 墨脱县| 新巴尔虎右旗| 亳州市| 兴义市| 汽车| 东丰县| 巴中市| 镇赉县| 娄底市| 商洛市| 鄂托克前旗| 溆浦县| 平昌县| 洛扎县| 河东区| 涞源县| 松江区| 临邑县| 津市市| 蒲江县| 凯里市| 廉江市| 绥阳县| 筠连县| 黄平县| 宝兴县|