找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2014; 13th European Confer David Fleet,Tomas Pajdla,Tinne Tuytelaars Conference proceedings 2014 Springer Internati

[復(fù)制鏈接]
樓主: Myelopathy
51#
發(fā)表于 2025-3-30 10:03:27 | 只看該作者
52#
發(fā)表于 2025-3-30 14:52:40 | 只看該作者
Joint Unsupervised Face Alignment and Behaviour Analysisusually trained on thousands of carefully annotated examples, is applied to track the landmark points, and then analysis is performed using mostly the shape and more rarely the facial texture. This paper challenges the above framework by showing that it is feasible to perform joint landmarks localiz
53#
發(fā)表于 2025-3-30 16:42:32 | 只看該作者
Learning a Deep Convolutional Network for Image Super-Resolutiontion images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unli
54#
發(fā)表于 2025-3-30 20:46:44 | 只看該作者
Discriminative Indexing for Probabilistic Image Patch Priorssks, especially deconvolution, due to its rich expressiveness. However, its applicability is limited by the heavy computation involved in the associated optimization process. Inspired by the recent advances on using regression trees to index priors defined on a Conditional Random Field, we propose a
55#
發(fā)表于 2025-3-31 01:49:58 | 只看該作者
Modeling Video Dynamics with Deep Dynencodernamic system can model dynamic textures but have limited capacity of representing sophisticated nonlinear dynamics. Inspired by the nonlinear expression power of deep autoencoders, we propose a novel model named dynencoder which has an autoencoder at the bottom and a variant of it at the top (named
56#
發(fā)表于 2025-3-31 06:35:14 | 只看該作者
Good Image Priors for Non-blind Deconvolutionat if we have more specific training examples, .sharp images of similar scenes? Surprisingly, state-of-the-art image priors don’t seem to benefit from from context-specific training examples. Re-training generic image priors using ideal sharp example images provides minimal improvement in non-blind
57#
發(fā)表于 2025-3-31 10:53:27 | 只看該作者
Image Deconvolution Ringing Artifact Detection and Removal via PSF Frequency Analysisinto account non-invertible frequency components of the blur kernel used in the deconvolution. Efficient Gabor wavelets are produced for each non-invertible frequency and applied on the deblurred image to generate a set of filter responses that reveal existing ringing artifacts. The set of Gabor fil
58#
發(fā)表于 2025-3-31 15:19:10 | 只看該作者
59#
發(fā)表于 2025-3-31 19:32:44 | 只看該作者
https://doi.org/10.1007/978-3-319-10593-23D; activity recognition and understanding; artificial intelligence; computational photography; computer
60#
發(fā)表于 2025-3-31 22:30:24 | 只看該作者
978-3-319-10592-5Springer International Publishing Switzerland 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 高清| 麻城市| 磴口县| 龙口市| 梅河口市| 涞水县| 通渭县| 南部县| 通许县| 崇左市| 乐东| 大石桥市| 清河县| 襄樊市| 金坛市| 乌拉特中旗| 长顺县| 肥西县| 驻马店市| 三原县| 安溪县| 武山县| 都匀市| 正宁县| 新河县| 康保县| 阿巴嘎旗| 谢通门县| 澄迈县| 东至县| 美姑县| 灵丘县| 大名县| 临潭县| 砚山县| 宣化县| 定日县| 开江县| 民勤县| 仁化县|