找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[復(fù)制鏈接]
樓主: 貧血
31#
發(fā)表于 2025-3-26 22:15:05 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:25 | 只看該作者
Doug Easterling,Howard Kunreutherrmulations. On our dataset composed of 350 artistic and 500 daily photographs, we achieve a 89.5% classification accuracy in cross-validated tests, and the assessment model assigns reasonable numerical scores based on portraits’ aesthetic quality in lighting.
33#
發(fā)表于 2025-3-27 08:10:29 | 只看該作者
The Dilemmas of Brief Psychotherapyework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
34#
發(fā)表于 2025-3-27 10:56:37 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8ication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
35#
發(fā)表于 2025-3-27 14:27:49 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
36#
發(fā)表于 2025-3-27 20:26:13 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:36 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:22 | 只看該作者
Max-Margin Dictionary Learning for Multiclass Image Categorizationework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
39#
發(fā)表于 2025-3-28 08:17:55 | 只看該作者
Weakly Supervised Classification of Objects in Images Using Soft Random Forestsication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
40#
發(fā)表于 2025-3-28 11:59:35 | 只看該作者
Adapting Visual Category Models to New Domains, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛川县| 江口县| 宁武县| 武邑县| 区。| 灵台县| 黄石市| 黄冈市| 阿拉善右旗| 增城市| 盘山县| 皋兰县| 家居| 乌什县| 罗源县| 兰西县| 盐边县| 托克逊县| 罗定市| 县级市| 安岳县| 工布江达县| 石狮市| 灵山县| 宜阳县| 清远市| 涪陵区| 彭州市| 揭东县| 民权县| 塔河县| 靖远县| 东丽区| 邮箱| 罗城| 达尔| 景谷| 阿坝县| 当雄县| 荔浦县| 凌海市|