找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[復(fù)制鏈接]
樓主: 兇惡的老婦
11#
發(fā)表于 2025-3-23 11:52:06 | 只看該作者
12#
發(fā)表于 2025-3-23 14:23:59 | 只看該作者
https://doi.org/10.1007/978-3-642-67047-3ion). We implemented MC-RISE and evaluate them using two datasets (GTSRB and ImageNet) to demonstrate the effectiveness of our methods in comparison with existing techniques for interpreting image classification results.
13#
發(fā)表于 2025-3-23 19:36:17 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:26 | 只看該作者
End-to-End Model-Based Gait Recognitionrimental results with the OU-MVLP and CASIA-B datasets demonstrate the state-of-the-art performance of the proposed method for both gait identification and verification scenarios, a direct consequence of the explicitly disentangled pose and shape features produced by the proposed end-to-end model-ba
16#
發(fā)表于 2025-3-24 06:42:23 | 只看該作者
Horizontal Flipping Assisted Disentangled Feature Learning for Semi-supervised Person Re-identificatfeatures. It is free of labels, and can be applied to both supervised and unsupervised learning branches in our model. Extensive results on four Re-ID datasets demonstrate that by reducing 5/6 labeled data, Our method achieves the best performance on Market-1501 and CUHK03, and comparable accuracy o
17#
發(fā)表于 2025-3-24 12:00:26 | 只看該作者
MIX’EM: Unsupervised Image Classification Using a Mixture of Embeddings (ii), semantic categories emerge through the mixture coefficients, making it possible to apply (iii). Subsequently, we run K-means on the representations to acquire semantic classification. We conduct extensive experiments and analyses on STL10, CIFAR10, and CIFAR100-20 datasets, achieving state-of
18#
發(fā)表于 2025-3-24 16:20:02 | 只看該作者
Backbone Based Feature Enhancement for Object Detectionncy and accuracy. Without bells and whistles, our BBFE improves different baseline methods (both anchor-based and anchor-free) by a large margin (.2.0 points higher AP) on COCO, surpassing common feature pyramid networks including FPN and PANet.
19#
發(fā)表于 2025-3-24 23:04:15 | 只看該作者
Long-Term Cloth-Changing Person Re-identificationcontribution, we propose a novel Re-ID method specifically designed to address the cloth-changing challenge. Specifically, we consider that under cloth-changes, soft-biometrics such as body shape would be more reliable. We, therefore, introduce a shape embedding module as well as a cloth-elimination
20#
發(fā)表于 2025-3-25 00:36:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红安县| 忻州市| 方正县| 涪陵区| 溧水县| 内黄县| 安化县| 原阳县| 互助| 商都县| 定兴县| 运城市| 南部县| 民勤县| 新野县| 桦南县| 湄潭县| 石城县| 塔城市| 高淳县| 上杭县| 石嘴山市| 团风县| 揭东县| 合作市| 汝州市| 环江| 固镇县| 嘉善县| 潼南县| 灵石县| 邵阳县| 伊宁县| 基隆市| 抚松县| 金乡县| 斗六市| 万州区| 宜阳县| 舒兰市| 桐城市|