找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2016 Workshops; ACCV 2016 Internatio Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma Conference proceedings 2017 Springer Intern

[復(fù)制鏈接]
樓主: KEN
31#
發(fā)表于 2025-3-27 00:22:08 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:24 | 只看該作者
CNN-GRNN for Image Sharpness Assessment machine learning, CNN-GRNN fuses feature extraction and score prediction into an optimization procedure. Experiments on Gaussian blurring images in LIVE, CSIQ, TID2008 and TID2013 show that CNN-GRNN outperforms the state-of-the-art algorithms and gets closer to human subjective judgment.
33#
發(fā)表于 2025-3-27 05:55:23 | 只看該作者
34#
發(fā)表于 2025-3-27 11:23:27 | 只看該作者
35#
發(fā)表于 2025-3-27 16:25:08 | 只看該作者
A Study of Combining Re-coloring and Adding Patterns to Images for Dichromatso add patterns according to the degree of deformation, and then re-color images overlaid with patterns. In the evaluation, we verify effectiveness of combining adding patterns and re-coloring, and demonstrate content-dependent characteristics through the studies based on different types of images and different types of patterns.
36#
發(fā)表于 2025-3-27 20:01:22 | 只看該作者
Emotion Understanding Using Multimodal Information Based on Autobiographical Memories for Alzheimer’icits of AD patients. This work uses novel EEG features based on quaternions, facial landmarks and the combination of them. Their performance was evaluated in a comparative study with a state of the art methods that demonstrates the proposed approach.
37#
發(fā)表于 2025-3-28 00:29:43 | 只看該作者
Blind Image Deblurring Using Elastic-Net Based Rank Priorelastic-net regularization of singular values. We quantitatively verify that it favors clear images over blurred images. This property is able to facilitate the kernel estimation in the conventional maximum a posterior framework. Based on this prior, we develop an efficient optimization method to so
38#
發(fā)表于 2025-3-28 03:57:21 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:28 | 只看該作者
CNN-GRNN for Image Sharpness AssessmentSA) is useful and challenging. In this paper, a shallow convolutional neural network (CNN) is proposed for intrinsic representation of image sharpness and general regression neural network (GRNN) is utilized for precise score prediction. The hybrid CNN-GRNN model tends to build functional relationsh
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永安市| 宁蒗| 礼泉县| 海口市| 潜山县| 怀来县| 陈巴尔虎旗| 正安县| 文山县| 花垣县| 临泽县| 防城港市| 建昌县| 富宁县| 宝坻区| 蕉岭县| 鄂托克旗| 枞阳县| 合山市| 徐水县| 米易县| 比如县| 林西县| 冷水江市| 天柱县| 沧源| 和林格尔县| 平顶山市| 丰台区| 连江县| 密云县| 都安| 涿鹿县| 浮山县| 兴国县| 定陶县| 错那县| 泾阳县| 南充市| 龙州县| 平原县|