找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[復(fù)制鏈接]
查看: 50952|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:31:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision –ACCV 2016
副標(biāo)題13th Asian Conferenc
編輯Shang-Hong Lai,Vincent Lepetit,Yoichi Sato
視頻videohttp://file.papertrans.cn/235/234116/234116.mp4
概述Includes supplementary material:
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio
描述.The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016. ..The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision..
出版日期Conference proceedings 2017
關(guān)鍵詞3D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
版次1
doihttps://doi.org/10.1007/978-3-319-54181-5
isbn_softcover978-3-319-54180-8
isbn_ebook978-3-319-54181-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱Computer Vision –ACCV 2016影響因子(影響力)




書(shū)目名稱Computer Vision –ACCV 2016影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision –ACCV 2016網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision –ACCV 2016網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision –ACCV 2016被引頻次




書(shū)目名稱Computer Vision –ACCV 2016被引頻次學(xué)科排名




書(shū)目名稱Computer Vision –ACCV 2016年度引用




書(shū)目名稱Computer Vision –ACCV 2016年度引用學(xué)科排名




書(shū)目名稱Computer Vision –ACCV 2016讀者反饋




書(shū)目名稱Computer Vision –ACCV 2016讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:32 | 只看該作者
地板
發(fā)表于 2025-3-22 08:25:05 | 只看該作者
5#
發(fā)表于 2025-3-22 08:58:15 | 只看該作者
The Development of the Vertebrate Retinan an instance of the class, and further process good proposals to produce an accurate object cutout mask. This amounts to an automatic end-to-end pipeline for catergory-specific object cutout. We evaluate our approach on segmentation benchmark datasets, and show that it significantly outperforms the
6#
發(fā)表于 2025-3-22 14:48:00 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:42 | 只看該作者
Deep Supervised Hashing with Triplet Labelsmaximizing the likelihood of pairwise similarities. Inspired by DPSH?[.], we propose a triplet label based deep hashing method which aims to maximize the likelihood of the given triplet labels. Experimental results show that our method outperforms all the baselines on CIFAR-10 and NUS-WIDE datasets,
8#
發(fā)表于 2025-3-23 00:27:29 | 只看該作者
Boosting Zero-Shot Image Classification via Pairwise Relationship LearningExtensive experiments validate the effectiveness of our method: with the properly learned pairwise relationships, we successfully boost the mean class accuracy of DAP on two standard benchmarks for the ZSIC problem, . and ., from . to . and . to ., respectively. Besides, experimental results on the
9#
發(fā)表于 2025-3-23 03:30:54 | 只看該作者
10#
發(fā)表于 2025-3-23 09:29:38 | 只看該作者
FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture competitive results with the state-of-the-art methods on the challenging SUN RGB-D benchmark obtaining 76.27% global accuracy, 48.30% average class accuracy and 37.29% average intersection-over-union score.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
应用必备| 汤原县| 珲春市| 南陵县| 石嘴山市| 和平区| 小金县| 文安县| 墨脱县| 玉山县| 饶阳县| 惠东县| 绵阳市| 城市| 衡阳市| 灵丘县| 湟中县| 全椒县| 昌宁县| 抚顺县| 万宁市| 平谷区| 许昌市| 都江堰市| 广南县| 大城县| 闻喜县| 玉山县| 桃源县| 玉门市| 陈巴尔虎旗| 泗阳县| 沐川县| 赞皇县| 定襄县| 迁西县| 济南市| 建始县| 突泉县| 句容市| 同江市|