找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[復(fù)制鏈接]
樓主: CK828
41#
發(fā)表于 2025-3-28 15:38:19 | 只看該作者
https://doi.org/10.1007/978-94-015-2813-9 frame-to-frame correspondences, the tracking traditionally relies on the iterative closest point technique which does not scale well with the number of points. In this paper, we build on top of more recent and efficient density distribution alignment methods, and notably push the idea towards a hig
42#
發(fā)表于 2025-3-28 20:20:38 | 只看該作者
https://doi.org/10.1007/978-94-015-2813-9model. The depth feature map is extracted based on superpixel contrast computation with spatial priors. We model the depth saliency map by approximating the density of depth-based contrast features using a Gaussian distribution. Similar to the depth saliency computation, the colour saliency map is c
43#
發(fā)表于 2025-3-29 02:39:35 | 只看該作者
https://doi.org/10.1007/978-94-015-2792-7blem largely rely on hand-crafted features and vanishing lines, and they often fail in highly cluttered indoor scenes. The proposed coarse-to-fine indoor layout estimation (CFILE) method consists of two stages: (1) coarse layout estimation; and (2) fine layout localization. In the first stage, we ad
44#
發(fā)表于 2025-3-29 05:38:33 | 只看該作者
45#
發(fā)表于 2025-3-29 07:36:48 | 只看該作者
46#
發(fā)表于 2025-3-29 14:01:50 | 只看該作者
Raimond Van Marle,Charlotte Van Marlethe contextual relationship in the image, such as the kind of object, relationship between two objects, or the action. In this paper, we turn our attention to more subjective components of descriptions that contain rich expressions to modify objects – namely attribute expressions. We start by collec
47#
發(fā)表于 2025-3-29 17:00:03 | 只看該作者
https://doi.org/10.1007/978-94-015-2798-9be their attributes, and recognize their relationships/interactions. In this paper, we propose a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model to generate image description. The proposed model encodes sentence as a sequence of combination of phrases and words, instead of a sequen
48#
發(fā)表于 2025-3-29 20:15:59 | 只看該作者
https://doi.org/10.1007/978-94-015-2798-9e between images and to be able to compare the strength of each property between images, relative attributes were introduced. However, since their introduction, hand-crafted and engineered features were used to learn increasingly complex models for the problem of relative attributes. This limits the
49#
發(fā)表于 2025-3-30 02:48:03 | 只看該作者
50#
發(fā)表于 2025-3-30 05:21:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌海市| 渭源县| 新和县| 泉州市| 新绛县| 萝北县| 潮州市| 满洲里市| 东明县| 万山特区| 高青县| 公安县| 漯河市| 甘南县| 浏阳市| 江阴市| 兴安盟| 天峻县| 榕江县| 合阳县| 镇宁| 娄烦县| 洛川县| 修武县| 沾益县| 林芝县| 涟源市| 腾冲县| 四会市| 龙江县| 天峻县| 平安县| 韶关市| 夹江县| 泽州县| 通许县| 泗水县| 峨眉山市| 象州县| 边坝县| 同德县|