找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3; Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 是英寸
31#
發(fā)表于 2025-3-27 00:21:07 | 只看該作者
32#
發(fā)表于 2025-3-27 02:53:00 | 只看該作者
33#
發(fā)表于 2025-3-27 09:15:12 | 只看該作者
34#
發(fā)表于 2025-3-27 11:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 17:03:37 | 只看該作者
,A New Methodology to?Detect Plant Disease Using Reprojected Multispectral Images from?RGB Colour Sp importance, feasibility, and applicability of the proposed method to identify plant diseases with affordable limits. The research found that the proposed model able to improve 4.35% detection accuracy compare to RGB colour-based images using identical deep learning-based detection model. To do so,
36#
發(fā)表于 2025-3-27 20:51:07 | 只看該作者
,Analysis of?the?Performance of?YOLO Models for?Tomato Plant Diseases Identification,ction scores on detection accuracy, precision, recall and F-1 score. However, YOLO-5 tiny performs better in terms of detection time but comprises detection accuracy. In this study, a publicly available data set name . has been used.
37#
發(fā)表于 2025-3-27 21:59:55 | 只看該作者
,Strawberries Maturity Level Detection Using Convolutional Neural Network (CNN) and?Ensemble Method,oposed based on SqueezeNet, GoogleNet, and VGG-16. Based on the considered performance matrices, SqueezeNet is recommended as the most effective model among all the classifiers and networks for detecting and classifying the maturity levels of strawberries.
38#
發(fā)表于 2025-3-28 05:22:01 | 只看該作者
39#
發(fā)表于 2025-3-28 09:17:48 | 只看該作者
Leveraging Computer Vision for Precision Viticulture, automation, posing new challenges and objectives that have not yet been explored. This work intends to deliver a complete guide of the current status of computer vision in viticulture, covering all management practices, such as pruning, binding, shoot thinning, weeding, spraying, leaf thinning, top
40#
發(fā)表于 2025-3-28 12:51:17 | 只看該作者
2524-7565 nd overall automation through robots and drones. The topics covered in the current volume, along with the previous volumes, are comprehensive literature for both beginners and experienced in this domain..978-981-99-3756-1978-981-99-3754-7Series ISSN 2524-7565 Series E-ISSN 2524-7573
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禹州市| 兴义市| 应城市| 东明县| 思南县| 洮南市| 天台县| 鸡西市| 邯郸市| 梁山县| 乌拉特后旗| 玉龙| 桂阳县| 游戏| 铜山县| 交口县| 云浮市| 上林县| 东方市| 湟中县| 华池县| 县级市| 石河子市| 东乌| 英超| 博乐市| 清水县| 临洮县| 武鸣县| 健康| 扶绥县| 唐海县| 梁山县| 宁海县| 汕头市| 安多县| 山东| 郯城县| 怀远县| 江西省| 柞水县|