找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Graphics; International Confer Leszek J. Chmielewski,Ryszard Kozera,Arkadiusz Or? Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: Magnanimous
21#
發(fā)表于 2025-3-25 03:54:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:35 | 只看該作者
Depth Perception Tendencies in the 3-D Environment of Virtual Reality,he virtual reality with 37 participants observing artificial scenes designed for exploring trends in the depth perception in the virtual 3-D environment. We analyzed the acquired data and discuss the revealed depth perception tendencies in virtual reality alongside future possible applications.
23#
發(fā)表于 2025-3-25 13:15:15 | 只看該作者
Optimisation of a Siamese Neural Network for Real-Time Energy Efficient Object Tracking,ed results indicate that using quantisation can significantly reduce the memory and computational complexity of the proposed network while still enabling precise tracking, thus allow to use it in embedded vision systems. Moreover, quantisation of weights positively affects the network training by de
24#
發(fā)表于 2025-3-25 15:56:31 | 只看該作者
25#
發(fā)表于 2025-3-25 20:13:45 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:23 | 只看該作者
,Performance Evaluation of Selected 3D Keypoint Detector–Descriptor Combinations,nes. Our tests show that choosing the right detector impacts the descriptor’s performance in the recognition process. The repeatability tests of the detectors show that the data which contained occlusions have a high impact on their performance. We summarized the results into graphs and described th
27#
發(fā)表于 2025-3-26 06:01:44 | 只看該作者
The Definitive Guide to Building Java Robotsthe AlexNet Convolutional Neural Network (CNN) architecture, which underwent data capturing, data augmentation that includes rescaling and shear zoom followed by feature extraction and classification using AlexNet. The AlexNet architecture performed exceptionally well, producing a model accuracy of
28#
發(fā)表于 2025-3-26 12:22:28 | 只看該作者
The Definitive Guide to Catalystures associated with tuberculosis and make corresponding accurate predictions. Our model achieved 87.8% accuracy in classifying chest X-ray into abnormal and normal classes and validated against the ground-truth. Our model expresses a promising pathway in solving the diagnosis issue in early detecti
29#
發(fā)表于 2025-3-26 13:24:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:53:50 | 只看該作者
The Definitive Guide to Catalysted results indicate that using quantisation can significantly reduce the memory and computational complexity of the proposed network while still enabling precise tracking, thus allow to use it in embedded vision systems. Moreover, quantisation of weights positively affects the network training by de
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红原县| 乳源| 宁海县| 台东县| 镇江市| 武穴市| 沈丘县| 扬州市| 道真| 韶关市| 尚义县| 南昌市| 五原县| 青铜峡市| 武威市| 莆田市| 吉隆县| 新和县| 四会市| 江孜县| 二连浩特市| 屏东市| 青河县| 海伦市| 醴陵市| 麻江县| 禄劝| 五河县| 合阳县| 乌审旗| 茂名市| 高陵县| 扬中市| 同江市| 东山县| 南安市| 宁波市| 彭山县| 囊谦县| 济宁市| 淳化县|