找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision; CCF Chinese Conferen Hongbin Zha,Xilin Chen,Qiguang Miao Conference proceedings 2015 Springer-Verlag Berlin Heidelberg 201

[復(fù)制鏈接]
查看: 8114|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:49:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision
副標(biāo)題CCF Chinese Conferen
編輯Hongbin Zha,Xilin Chen,Qiguang Miao
視頻videohttp://file.papertrans.cn/234/233990/233990.mp4
概述Includes supplementary material:
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Computer Vision; CCF Chinese Conferen Hongbin Zha,Xilin Chen,Qiguang Miao Conference proceedings 2015 Springer-Verlag Berlin Heidelberg 201
描述.The two volumes CCIS 546 and 547 constitute the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2015, held in Xi‘a(chǎn)n, China, in September 2015.?.The total of 89 revised full papers presented in both volumes were carefully reviewed and selected from 176 submissions. The papers address issues such as computer vision, machine learning, pattern recognition, target recognition, object detection, target tracking, image segmentation, image restoration, face recognition, image classification..
出版日期Conference proceedings 2015
關(guān)鍵詞Deep learning; object detection; object recognition; object tracking; video tracking; sparse representati
版次1
doihttps://doi.org/10.1007/978-3-662-48570-5
isbn_softcover978-3-662-48569-9
isbn_ebook978-3-662-48570-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer-Verlag Berlin Heidelberg 2015
The information of publication is updating

書目名稱Computer Vision影響因子(影響力)




書目名稱Computer Vision影響因子(影響力)學(xué)科排名




書目名稱Computer Vision網(wǎng)絡(luò)公開度




書目名稱Computer Vision網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision被引頻次




書目名稱Computer Vision被引頻次學(xué)科排名




書目名稱Computer Vision年度引用




書目名稱Computer Vision年度引用學(xué)科排名




書目名稱Computer Vision讀者反饋




書目名稱Computer Vision讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:26:19 | 只看該作者
The Crisis of French Sea Power, 1688–1697ors theoretically analyzed the convergence of improved Multi-innovation Kalman Filter algorithm. Finally, simulation results show that the improved algorithm Multi- innovation Kalman Filter is superior to the traditional Kalman Filter.
地板
發(fā)表于 2025-3-22 05:54:05 | 只看該作者
The Crisis of French Sea Power, 1688–1697t for next frame according to the occlusion map of current tracking result. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
5#
發(fā)表于 2025-3-22 10:35:51 | 只看該作者
Paradoxes of Multiculturalism in Bolivia,ient (HOG)+ Support Vector Machine(SVM)and HSV (Hue, Saturation, Value)+SVM to test the new database and compares these methods with our CNNs model. The results demonstrate the superiority of our CNNs to the other algorithms.
6#
發(fā)表于 2025-3-22 15:21:55 | 只看該作者
The Social Services and the Inner Cityriptor, the IRoPS descriptor includes the local depth information and it has better discriminative power. Extensive experiments are performed to verify the superior performance of the proposed descriptor.
7#
發(fā)表于 2025-3-22 19:40:51 | 只看該作者
https://doi.org/10.1007/978-1-349-16163-8plied to obtain the low-dimensional and discriminative feature vector. We evaluated the proposed method on the real-world face image datasets NUST-RWFR, Pubfig and LFW. In all experiments, DGI achieves competitive results compared with state-of-the-art algorithms.
8#
發(fā)表于 2025-3-23 00:07:37 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:24 | 只看該作者
The Social Services and the Inner Cityts demonstrate the system can increase the average peak signal-to-noise ratio of jittered videos around 6.12?dB, The subjective experiments demonstrate the system can increase the identification ability and perceptive comfort on video content.
10#
發(fā)表于 2025-3-23 05:54:32 | 只看該作者
Local Variation Joint Representation for Face Recognition with Single Sample per Person,ns, while the joint and local collaborative representation could effectively use local information of face images. Experiments on the large-scale CMU Multi-PIE and AR databases demonstrate that the proposed LVJR method achieves better results compared with the existing solutions to the single sample per person problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦县| 沙坪坝区| 辰溪县| 沽源县| 南宫市| 天柱县| 清丰县| 罗山县| 罗江县| 左权县| 乌海市| 崇明县| 隆昌县| 安国市| 大新县| 迁西县| 济源市| 苏尼特左旗| 通海县| 汤原县| 揭东县| 庆云县| 安图县| 如东县| 英吉沙县| 西华县| 榆社县| 皋兰县| 叶城县| 营山县| 钦州市| 连江县| 沙田区| 金平| 湟源县| 自贡市| 崇阳县| 大兴区| 通州区| 那坡县| 左权县|