找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Computer Supported Cooperative Work and Social Computing; 18th CCF Conference, Yuqing Sun,Tun Lu,Bowen Du Conference proceedings 2024 The E

[復(fù)制鏈接]
樓主: deliberate
31#
發(fā)表于 2025-3-26 21:09:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:19 | 只看該作者
Incremental Inductive Dynamic Network Community Detectionel reuse for dynamic representation learning, constructs incremental node sets for updating the model, reduces training overhead, and quickly obtains node representation vectors for new moments of the network, then completing dynamic network community detection. IINDCD runs without reconstruction and with low retraining overhead.
33#
發(fā)表于 2025-3-27 05:59:44 | 只看該作者
Er-EIR: A Chinese Question Matching Model Based on Word-Level and Sentence-Level Interaction Feature incorporate a co-attention mechanism to capture the interaction information between sentence pairs. By comparing our model with several baseline models on a self-built dataset of university financial question pairs, we have achieved remarkable performance.
34#
發(fā)表于 2025-3-27 12:17:10 | 只看該作者
35#
發(fā)表于 2025-3-27 15:01:23 | 只看該作者
Prompt-Based and?Two-Stage Training for?Few-Shot Text Classificationecently, prompt-based learning has emerged as a powerful approach to handling a wide variety of tasks in NLP. It effectively bridges the gap between pre-trained language models (PLMs) and downstream tasks. Verbalizers are key components in prompt-based tuning. Existing manual prompts heavily rely on
36#
發(fā)表于 2025-3-27 21:19:16 | 只看該作者
A Fine-Grained Image Description Generation Method Based on?Joint Objectivest provide coherent and comprehensive textual details about the image content. Currently, most of these methods face two main challenges: description repetition and omission. Moreover, the existing evaluation metrics cannot clearly reflect the performance of models on these two issues. To address the
37#
發(fā)表于 2025-3-27 21:56:37 | 只看該作者
Analyzing Collective Intelligence Through Sentiment Networks in?Self-organized Douban Communitiesn network communication research. In this study, we present an approach integrating the BERTopic topic model, advanced Natural Language Processing (NLP) techniques, and Social Network Analysis, to meticulously dissect the intricate dynamics of emotion propagation and evolution within collective beha
38#
發(fā)表于 2025-3-28 05:26:42 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:25 | 只看該作者
Scholar Influence Maximization via?Opinion Leader and?Graph Embedding Regression in?Social Networksence maximization problem. Most Existing influence maximization algorithms relying on scenario-specific centrality measures often underperform when applied to diverse social networks. Many influence maximization deep learning based algorithms use topological embedding to learn the global influence i
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄山市| 集安市| 卫辉市| 体育| 永安市| 汨罗市| 理塘县| 五河县| 广宗县| 伊吾县| 习水县| 旬邑县| 镇赉县| 泸州市| 偏关县| 青海省| 文昌市| 沿河| 宝清县| 自贡市| 玉门市| 灵武市| 资溪县| 易门县| 五大连池市| 黄石市| 昭苏县| 盐山县| 江西省| 德庆县| 得荣县| 邻水| 达尔| 长治市| 雅江县| 麻栗坡县| 宜丰县| 桑植县| 斗六市| 杭州市| 缙云县|