找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
41#
發(fā)表于 2025-3-28 17:37:09 | 只看該作者
Subtyping with singleton types,pecification {.} which is met uniquely by .. Singletons integrate abbreviational definitions into a type system: the hypothesis .: {. asserts .. The addition of singleton types is a non-conservative extension of familiar subtyping theories. In our system, more terms are typable and previously typable terms have more (non-dependent) types.
42#
發(fā)表于 2025-3-28 18:49:55 | 只看該作者
,Convergence and 0–1 laws for ,, under arbitrary measures,itrary measure. We use this theorem to obtain some results about the nonexistence of .. convergence laws for particular classes of structures. We also disprove a conjecture of Tyszkiewicz [16] relating the existence of .. and MSO 0–1 laws on classes of structures with arbitrary measures.
43#
發(fā)表于 2025-3-29 00:59:45 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:36 | 只看該作者
0302-9743 cal systems. Together, these papers give a representative snapshot of the area of logical foundations of computer science.978-3-540-60017-6978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:56:45 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:56 | 只看該作者
https://doi.org/10.1007/978-3-319-58341-9and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
47#
發(fā)表于 2025-3-29 16:23:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:26:37 | 只看該作者
Logic programming in Tau Categories,and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
49#
發(fā)表于 2025-3-30 02:35:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:12:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新密市| 泗阳县| 天柱县| 广州市| 门源| 田阳县| 靖宇县| 五常市| 武定县| 濮阳县| 闻喜县| 凭祥市| 嘉定区| 湘潭县| 游戏| 兰考县| 沅陵县| 体育| 罗源县| 宜州市| 和硕县| 河间市| 哈尔滨市| 扎囊县| 泽州县| 枝江市| 长白| 长阳| 黄陵县| 西宁市| 乌审旗| 平湖市| 三门峡市| 康定县| 改则县| 太保市| 宁夏| 修水县| 彭州市| 保山市| 简阳市|