找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Networks, Big Data and IoT; Proceedings of ICCBI A. Pasumpon Pandian,Xavier Fernando,Wang Haoxiang Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: 憑票入場
31#
發(fā)表于 2025-3-27 00:59:50 | 只看該作者
https://doi.org/10.1007/978-981-99-8846-4sed along with available tools for simulation in an opportunistic network. The main objective of this article is to deal with current challenges in routing and to provide a future direction for the same.
32#
發(fā)表于 2025-3-27 03:13:33 | 只看該作者
Biodiversity: Concepts and Valueser than the standard .-means in lower dimensions. Furthermore, this article delves deeper into the effects of algorithm hyperparameters and dataset parameters on .-splits. Finally, it suggests using .-splits to uncover the exact position of centroids and then input them as initial points to the .-means algorithm to fine-tune the results.
33#
發(fā)表于 2025-3-27 05:57:50 | 只看該作者
34#
發(fā)表于 2025-3-27 12:02:47 | 只看該作者
35#
發(fā)表于 2025-3-27 13:53:37 | 只看該作者
36#
發(fā)表于 2025-3-27 21:08:40 | 只看該作者
Sign Language Interpreter,ir quarantine from the rest of the society notably. Results from this literature review could help in development of an efficient sign interpreter which helps for the communication between non-signer and a signer.
37#
發(fā)表于 2025-3-27 23:26:55 | 只看該作者
Performance Analysis and Assessment of Various Energy Efficient Clustering-Based Protocols in WSN,ced distributed energy efficient clustering (EDEEC) and stable election protocol (SEP) are executed. The analysis is carried out in terms of number of nodes and probability of election for cluster head (CH). The observations and results obtained for these protocols are presented.
38#
發(fā)表于 2025-3-28 03:07:45 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:13 | 只看該作者
K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect the Number of Clusters,er than the standard .-means in lower dimensions. Furthermore, this article delves deeper into the effects of algorithm hyperparameters and dataset parameters on .-splits. Finally, it suggests using .-splits to uncover the exact position of centroids and then input them as initial points to the .-means algorithm to fine-tune the results.
40#
發(fā)表于 2025-3-28 10:53:47 | 只看該作者
Optimisation of the Execution Time Using Hadoop-Based Parallel Machine Learning on Computing Clusteity and speed are developed after comprehensive examinations. In order to improve clustering quality and speed up the localised clustering solution, the MapReduce-K-means-distributed (MR-K-means) document clustering approach is implemented in the Hadoop framework using an efficient similarity metric.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禹城市| 乌苏市| 濮阳县| 台安县| 永德县| 安国市| 嘉义县| 五寨县| 鞍山市| 镇安县| 凤山市| 翁源县| 江门市| 安图县| 邛崃市| 三门峡市| 湖南省| 上虞市| 壶关县| 唐海县| 晋江市| 通州区| 马关县| 镇江市| 九龙城区| 江达县| 株洲县| 克山县| 沙湾县| 克山县| 修武县| 沾益县| 汝阳县| 陵水| 无为县| 洪雅县| 镇宁| 枣强县| 石台县| 资源县| 恭城|