找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復制鏈接]
查看: 53157|回復: 63
樓主
發(fā)表于 2025-3-21 17:46:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Graphics and Geometric Modeling Using Beta-splines
編輯Brian A. Barsky
視頻videohttp://file.papertrans.cn/234/233565/233565.mp4
叢書名稱Computer Science Workbench
圖書封面Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines;  Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra
出版日期Book 1988
關鍵詞computer graphics; geometric modeling; modeling
版次1
doihttps://doi.org/10.1007/978-3-642-72292-9
isbn_softcover978-3-642-72294-3
isbn_ebook978-3-642-72292-9Series ISSN 1431-1488
issn_series 1431-1488
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Computer Graphics and Geometric Modeling Using Beta-splines影響因子(影響力)




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines影響因子(影響力)學科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines網(wǎng)絡公開度




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines網(wǎng)絡公開度學科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines被引頻次




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines被引頻次學科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines年度引用




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines年度引用學科排名




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines讀者反饋




書目名稱Computer Graphics and Geometric Modeling Using Beta-splines讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:55:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:45 | 只看該作者
Curve Evaluation and Perturbation with Uniform Shape Parameters,tly evaluate a Beta-spline curve. Observe that all the coefficient functions have a constant denominator of δ. Thus, all the divisions can be performed prior to the actual computation of the Beta-spline basis functions. The following algorithm evaluates the basis functions at . + 1 given values of t
地板
發(fā)表于 2025-3-22 07:55:33 | 只看該作者
5#
發(fā)表于 2025-3-22 09:28:02 | 只看該作者
Curve Evaluation and Perturbation with Continuous Shape Parameters,xpression for the curve will have a denominator of δ(.). It is thus of computational interest to define corresponding sets of coefficient functions and basis functions that are scaled by a factor of δ(.). This would simplify the expressions and eliminate redundant divisions. These scaled coefficient
6#
發(fā)表于 2025-3-22 14:12:18 | 只看該作者
7#
發(fā)表于 2025-3-22 17:41:45 | 只看該作者
Surface Evaluation and Perturbation with Uniform Shape Parameters, involves the computation of points on the surface for many different values of the domain parameters. The determination of a point on the patch requires the evaluation of the surface formulation at an appropriate (.) value. This entails the evaluation of the four basis functions at the value of . a
8#
發(fā)表于 2025-3-22 23:44:11 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:49 | 只看該作者
Geometrical Interpretation of the Shape Parameters, information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
10#
發(fā)表于 2025-3-23 06:55:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐亭县| 微博| 景德镇市| 延庆县| 寻乌县| 泰来县| 青州市| 东安县| 江北区| 天峨县| 板桥市| 奉新县| 清苑县| 成武县| 军事| 闽侯县| 班玛县| 镇江市| 田阳县| 三江| 古田县| 太白县| 乡宁县| 万安县| 富阳市| 光山县| 水城县| 镇沅| 田东县| 同仁县| 盐池县| 三都| 汉阴县| 油尖旺区| 依兰县| 辽宁省| 南通市| 峨边| 高陵县| 海晏县| 呼玛县|