找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Analysis of Images and Patterns; 18th International C Mario Vento,Gennaro Percannella Conference proceedings 2019 Springer Nature

[復制鏈接]
樓主: brachytherapy
31#
發(fā)表于 2025-3-26 22:54:30 | 只看該作者
32#
發(fā)表于 2025-3-27 01:35:56 | 只看該作者
Toward New Spherical Harmonic Shannon Entropy for Surface Modeling the optimal reconstruction order that best represent the initial surface. This paper proposed a new spherical harmonics shannon-type entropy to optimize reconstruction and to provide an accurate and efficient evaluation method of the reconstruction order.
33#
發(fā)表于 2025-3-27 05:41:36 | 只看該作者
Challenges and Methods of Violence Detection in Surveillance Video: A Surveylassify the methods into five broad categories. We discuss each category and present the main techniques that proposed improvements as well as some performance measures using public datasets to evaluate the different existing techniques of violence detection.
34#
發(fā)表于 2025-3-27 12:18:30 | 只看該作者
Binary Code for the Compact Palmprint Representation Using Texture Featuresxperiments performed on the benchmark PolyU palmprint database. Moreover, the reported results show that the obtained accuracy appears to be hardly dependent on the number of enrolled samples. The proposed representation may be extremely useful in real life applications because of its compactness and effectiveness.
35#
發(fā)表于 2025-3-27 13:51:30 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:51 | 只看該作者
https://doi.org/10.1007/BFb0096231ults in terms of accuracy and also reduce the overall epistemic uncertainty. To summarize, in this paper we propose a class-conditional data augmentation procedure that allows us to obtain better results and improve robustness of the classification in the face of model uncertainty.
37#
發(fā)表于 2025-3-27 22:12:06 | 只看該作者
Hybrid Function Sparse Representation Towards Image Super Resolution the results. In addition, a reconstruct strategy is adopted to deal with the overlaps. The experiments on ‘Set14’ SR dataset show that our method has an excellent performance particularly with regards to images containing rich details and contexts compared with non-learning based state-of-the art methods.
38#
發(fā)表于 2025-3-28 05:49:14 | 只看該作者
39#
發(fā)表于 2025-3-28 07:01:38 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:15 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 15:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
林芝县| 宝应县| 济宁市| 麻江县| 浦北县| 即墨市| 莲花县| 卫辉市| 历史| 大港区| 登封市| 温泉县| 洛隆县| 淅川县| 昌宁县| 龙山县| 安达市| 平罗县| 习水县| 公安县| 通州市| 静宁县| 芦溪县| 托克逊县| 扶风县| 平乡县| 竹溪县| 海盐县| 陕西省| 广汉市| 平泉县| 三穗县| 大同县| 隆昌县| 工布江达县| 九江市| 龙海市| 渝北区| 青州市| 蒲江县| 河北区|