找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing CASC 2001; Proceedings of the F Victor G. Ganzha,Ernst W. Mayr,Evgenii V. Vorozhts Conference proc

[復制鏈接]
樓主: 從未沮喪
31#
發(fā)表于 2025-3-27 00:54:03 | 只看該作者
32#
發(fā)表于 2025-3-27 02:17:53 | 只看該作者
Cooperation between a Dynamic Geometry Environment and a Computer Algebra System for Geometric Discon domain of geometric discovery, which supports this claim. When interfacing a standard dynamic geometry environment and Mathematica, we enhance the educational uses of geometric problem solving environments through the symbolic capabilities of computer algebra software.
33#
發(fā)表于 2025-3-27 07:50:54 | 只看該作者
On the Stability of Steady Motions of Solar-Sail Satellite,ined, and Lyapunov’s method has been employed to investigate their stability. The sufficient conditions are compared with the necessary ones. To the end of solving the problem, the capabilities of the software “Stability” for symbolic computations have been used [1].
34#
發(fā)表于 2025-3-27 10:30:53 | 只看該作者
35#
發(fā)表于 2025-3-27 14:34:19 | 只看該作者
, and Nilpotent Lie Superalgebras, these superalgebras with arbitrary dimension of even part and dimension of odd part up to three. By using the software . we classify these superalgebras for arbitrary dimension of even part and dimension of odd part up to two.
36#
發(fā)表于 2025-3-27 19:56:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:45 | 只看該作者
Recurrence Functions and Numerical Characteristics of Graphs,ce functions of graphs. The combinatorial objects, the so-called (.)-placements, are used. The algorithm, which can be realized on PC and allows to reveal some relations between the numerical characteristics of graphs, is resulted.
38#
發(fā)表于 2025-3-28 05:29:47 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:35 | 只看該作者
978-3-642-62684-5Springer-Verlag Berlin Heidelberg 2001
40#
發(fā)表于 2025-3-28 13:05:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
固安县| 临沧市| 孝义市| 陆丰市| 绵阳市| 三亚市| 绵阳市| 宜兴市| 乌拉特后旗| 连山| 天津市| 桂平市| 长阳| 中牟县| 宁波市| 叶城县| 周口市| 临猗县| 常宁市| 汾阳市| 洪泽县| 青神县| 庄河市| 孟津县| 嘉黎县| 东平县| 陇南市| 孝感市| 富川| 宜兴市| 遂川县| 怀化市| 浑源县| 资兴市| 基隆市| 龙海市| 三台县| 滕州市| 如皋市| 克拉玛依市| 博乐市|