找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing; 14th International W Vladimir P. Gerdt,Wolfram Koepf,Evgenii V. Vorozht Conference proceedings 20

[復(fù)制鏈接]
樓主: 不足木
51#
發(fā)表于 2025-3-30 08:28:15 | 只看該作者
52#
發(fā)表于 2025-3-30 12:43:41 | 只看該作者
Peter H. Carstensen,Otto Vinter the generic initial ideal. In contrast to genericity, quasi-stability is a characteristic independent property that can be effectively verified. We also relate Pommaret bases to some invariants associated with local cohomology, exhibit the existence of linear quotients in Pommaret bases and prove s
53#
發(fā)表于 2025-3-30 17:29:37 | 只看該作者
54#
發(fā)表于 2025-3-31 00:28:49 | 只看該作者
55#
發(fā)表于 2025-3-31 04:15:45 | 只看該作者
Murat Yilmaz,Paul Clarke,Bruno W?rany binary splitting. It follows from our analysis that the values of D-finite functions (i.e., functions described as solutions of linear differential equations with polynomial coefficients) may be computed with error bounded by 2. in time . and space O (.). The standard fast algorithm for this task,
56#
發(fā)表于 2025-3-31 06:56:32 | 只看該作者
https://doi.org/10.1007/978-3-642-32973-9complexity; holonomic functions; long integers; parallel algorithms; polynomial factorization; algorithm
57#
發(fā)表于 2025-3-31 09:11:47 | 只看該作者
978-3-642-32972-2Springer-Verlag Berlin Heidelberg 2012
58#
發(fā)表于 2025-3-31 13:49:51 | 只看該作者
https://doi.org/10.1007/978-3-319-97925-0Using tools of computer algebra we derive the conditions for the cubic Lotka–Volterra system ., . to be linearizable and to admit a first integral of the form Φ(.,.)?=?....?+?? in a neighborhood of the origin, in which case the origin is called a 2:???3 resonant center.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝兴县| 尤溪县| 资源县| 定安县| 和龙市| 兴山县| 浙江省| 丹江口市| 吉水县| 海城市| 九龙城区| 安远县| 辽阳县| 呼图壁县| 连南| 清丰县| 家居| 班戈县| 玉龙| 栾川县| 阿克苏市| 汉源县| 宝兴县| 酒泉市| 清流县| 福鼎市| 秦安县| 弋阳县| 甘德县| 陆河县| 阆中市| 察隅县| 萨嘎县| 南投县| 兰西县| 荆州市| 英德市| 泸溪县| 深圳市| 五大连池市| 游戏|