找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing; 12th International W Vladimir P. Gerdt,Wolfram Koepf,Evgenii V. Vorozht Conference proceedings 20

[復(fù)制鏈接]
樓主: interleukins
51#
發(fā)表于 2025-3-30 09:16:11 | 只看該作者
52#
發(fā)表于 2025-3-30 12:36:18 | 只看該作者
https://doi.org/10.1057/9780230299221tativity. By considering this condition as a stationary Lax representation we are able to treat completely integrable dynamical systems. As special cases we obtain Hénon-Heiles dynamical systems. We propose algorithms to do this by using the powerful methods of computer algebra and performing symbol
53#
發(fā)表于 2025-3-30 18:46:13 | 只看該作者
54#
發(fā)表于 2025-3-30 20:45:52 | 只看該作者
55#
發(fā)表于 2025-3-31 04:54:11 | 只看該作者
Notes on Stochastic Processes on Manifolds,s, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive
56#
發(fā)表于 2025-3-31 06:17:24 | 只看該作者
Studies in Systems, Decision and Controlormalization as . or . systems. If one considers . VRS’s, it turns out that they are equivalent to finitely presented commutative semigroups or to binomial ideals in a multivariate ring over ?..We outline and survey the interaction between these domains of computational algebra, system modeling and
57#
發(fā)表于 2025-3-31 12:24:18 | 只看該作者
58#
發(fā)表于 2025-3-31 16:45:52 | 只看該作者
Thomas Decomposition of Algebraic and Differential Systems,simple subsystems. We exploit . decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in ..
59#
發(fā)表于 2025-3-31 19:37:18 | 只看該作者
60#
發(fā)表于 2025-4-1 01:27:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 洪江市| 宝坻区| 惠来县| 乃东县| 宜兴市| 喜德县| 色达县| 西安市| 贵南县| 灵川县| 上饶县| 和顺县| 阿勒泰市| 武夷山市| 临澧县| 黄浦区| 徐闻县| 安陆市| 当涂县| 石家庄市| 台北市| 定日县| 武鸣县| 张掖市| 翼城县| 修文县| 密云县| 峨眉山市| 无极县| 成武县| 道真| 上栗县| 共和县| 迭部县| 仪征市| 古蔺县| 泽普县| 灯塔市| 灵山县| 兴安县|