找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Analytical Mathematics; In Honor of Jonathan David H. Bailey,Heinz H. Bauschke,Henry Wolkowicz Conference proceedings 201

[復制鏈接]
樓主: 浮標
31#
發(fā)表于 2025-3-26 21:35:51 | 只看該作者
32#
發(fā)表于 2025-3-27 02:14:46 | 只看該作者
Monotone Operator Methods for Nash Equilibria in Non-potential Games,We observe that a significant class of Nash equilibrium problems in non-potential games can be associated with monotone inclusion problems. We propose splitting techniques to solve such problems and establish their convergence. Applications to generalized Nash equilibria, zero-sum games, and cyclic proximation problems are demonstrated.
33#
發(fā)表于 2025-3-27 08:50:34 | 只看該作者
The Largest Roots of the Mandelbrot Polynomials,This paper gives some details of the experimental discovery and partial proof of a simple asymptotic development for the largest magnitude roots of the Mandelbrot polynomials defined by ..(.) = 1 and ..
34#
發(fā)表于 2025-3-27 13:12:04 | 只看該作者
Visible Points in Convex Sets and Best Approximation,The concept of a . of a convex set relative to a given point is introduced. A number of basic properties of such visible point sets are developed. In particular, it is shown that this concept is useful in the study of best approximation, and it also seems to have potential value in the study of robotics.
35#
發(fā)表于 2025-3-27 15:06:17 | 只看該作者
36#
發(fā)表于 2025-3-27 18:22:05 | 只看該作者
2194-1009 for Experimental and Constructive Mathematics and the IRMACS Centre at Simon Fraser University, the Dalhousie Distributed Research Institute at Dalhousie University, the Western Canada Research Gri978-1-4939-4234-3978-1-4614-7621-4Series ISSN 2194-1009 Series E-ISSN 2194-1017
37#
發(fā)表于 2025-3-28 00:45:10 | 只看該作者
38#
發(fā)表于 2025-3-28 05:31:50 | 只看該作者
https://doi.org/10.1007/978-3-0348-6894-5-normal. We then show that a practical and reasonably effective pseudorandom number generator can be defined based on the binary digits of this constant and conclude by sketching out some directions for further research.
39#
發(fā)表于 2025-3-28 09:52:00 | 只看該作者
40#
發(fā)表于 2025-3-28 13:04:20 | 只看該作者
https://doi.org/10.1007/978-3-322-80101-2um of two maximally monotone linear relations. We also present a new proof of the maximality of the sum of a maximally monotone linear relation and a normal cone operator when the domain of the linear relation intersects the interior of the domain of the normal cone.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 03:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
恩施市| 房山区| 鸡泽县| 沁阳市| 措美县| 巴林左旗| 张家界市| 竹溪县| 五家渠市| 天柱县| 蓬莱市| 安多县| 隆安县| 阜南县| 讷河市| 伊宁市| 岑溪市| 广饶县| 临西县| 喜德县| 抚松县| 轮台县| 凌云县| 类乌齐县| 台山市| 翁牛特旗| 丰都县| 饶河县| 麻城市| 无锡市| 缙云县| 松溪县| 英吉沙县| 麟游县| 即墨市| 江达县| 宽城| 于都县| 苏尼特左旗| 满洲里市| 安庆市|