找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Systems Biology; Reneé Ireton,Kristina Montgomery,Jason McDermott Book 2009 Humana Press 2009 Analysis.algorithms.bioinforma

[復制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 23:15:56 | 只看該作者
32#
發(fā)表于 2025-3-27 03:14:50 | 只看該作者
Prediction of Protein–Protein Interactions: A Study of the Co-evolution Modelmodel are considered, including algorithms that attempt to identify the subset of the database proteins (the homologs of the query proteins) that are more likely to interact. We test the models over a large set of protein interactions extracted from several sources, including BIND, DIP, and HPRD.
33#
發(fā)表于 2025-3-27 07:41:06 | 只看該作者
Methods to Reconstruct and Compare Transcriptional Regulatory Networks. In this chapter, we will focus in detail on the first approach and describe methods to reconstruct and analyze the transcriptional regulatory networks of uncharacterized organisms by using a known regulatory network as a template.
34#
發(fā)表于 2025-3-27 10:51:18 | 只看該作者
35#
發(fā)表于 2025-3-27 16:46:28 | 只看該作者
1064-3745 ological network analysis and data representation and manageComputational systems biology is the term that we use to describe computational methods to identify, infer, model, and store relationships between the molecules, pathways, and cells (‘‘systems’’) involved in a living organism. Based on this
36#
發(fā)表于 2025-3-27 20:05:25 | 只看該作者
37#
發(fā)表于 2025-3-27 23:27:20 | 只看該作者
Computational Reconstruction of Protein–Protein Interaction Networks: Algorithms and Issues of evidence using machine learning methods. Here we describe the commonly used algorithms for predicting protein–protein interaction by genome data integration, and discuss several important yet often overlooked issues in computational reconstruction of protein–protein interaction networks.
38#
發(fā)表于 2025-3-28 05:37:44 | 只看該作者
Structure-Based , Prediction of Transcription Factor–Binding Sitest molecular water solvent and counter-ions. For computational efficiency, we use a standard additive approximation for the contribution of each DNA base pair to the total binding free energy. The additive approximation is not strictly necessary, and more detailed computations could be used to invest
39#
發(fā)表于 2025-3-28 06:45:06 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 06:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沙洋县| 紫金县| 清涧县| 吉木萨尔县| 策勒县| 长武县| 民勤县| 神池县| 双城市| 百色市| 贡觉县| 邹城市| 克拉玛依市| 班玛县| 珠海市| 衢州市| 新津县| 宿州市| 宁武县| 长寿区| 从江县| 黄骅市| 焉耆| 油尖旺区| 诸暨市| 岗巴县| 聊城市| 本溪市| 株洲市| 娱乐| 崇义县| 五台县| 克山县| 罗田县| 达孜县| 北川| 乾安县| 天等县| 华蓥市| 土默特左旗| 冕宁县|