找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stem Cell Biology; Methods and Protocol Patrick Cahan Book 2019 Springer Science+Business Media, LLC, part of Springer Nature

[復(fù)制鏈接]
樓主: 尤指植物
31#
發(fā)表于 2025-3-26 21:08:36 | 只看該作者
32#
發(fā)表于 2025-3-27 01:24:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:33:42 | 只看該作者
https://doi.org/10.1007/978-981-19-4847-3via analytical calculation or stochastic simulations of the model’s Master equation, and to predict the outcomes of clonal statistics for respective hypotheses. We also illustrate two approaches to compare these predictions directly with the clonal data to assess the models.
34#
發(fā)表于 2025-3-27 09:56:52 | 只看該作者
Sustainable Tertiary Education in Asia landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
35#
發(fā)表于 2025-3-27 15:44:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:32:29 | 只看該作者
37#
發(fā)表于 2025-3-27 23:38:07 | 只看該作者
Cem Ba??ran,Ay?egül K?rlü,Saadet Yaparmajor interest. Therefore, here we present an in-house state-of-the-art scRNA-seq data analyses workflow for de novo lineage tree inference and stem cell identity prediction applicable to many biological processes under current investigation.
38#
發(fā)表于 2025-3-28 03:42:18 | 只看該作者
Cem Ba??ran,Ay?egül K?rlü,Saadet Yaparcol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.
39#
發(fā)表于 2025-3-28 06:33:03 | 只看該作者
40#
發(fā)表于 2025-3-28 13:55:12 | 只看該作者
Quantitative Modelling of the Waddington Epigenetic Landscape landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江津市| 藁城市| 道孚县| 固安县| 茂名市| 林周县| 策勒县| 齐河县| 来凤县| 祁东县| 长岛县| 隆子县| 谢通门县| 陈巴尔虎旗| 仁化县| 信阳市| 信宜市| 龙游县| 鄂托克旗| 徐州市| 顺义区| 庆阳市| 雷山县| 南昌市| 兴安盟| 灌云县| 巨鹿县| 广元市| 乐陵市| 砚山县| 增城市| 宁安市| 青神县| 黄陵县| 永年县| 安乡县| 行唐县| 绥芬河市| 纳雍县| 阳高县| 西华县|