找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Optimization; A Tribute to Olvi Ma Jong-Shi Pang Book 1999 Springer Science+Business Media New York 1999 Analysis.MATLAB.Sage

[復(fù)制鏈接]
樓主: purulent
21#
發(fā)表于 2025-3-25 03:36:47 | 只看該作者
Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming,cified elements of A that make A a Euclidean distance matrix (EDM). In this paper, we follow the successful approach in [20] and solve the EDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introduce a primal-dual interiorpoint algorithm that solves
22#
發(fā)表于 2025-3-25 10:02:17 | 只看該作者
A Logarithmic-Quadratic Proximal Method for Variational Inequalities,c proximal term which replaces the usual quadratic, and leads to an interior proximal type algorithm. We allow for computing the iterates approximately and prove that the resulting method is globally convergent under the sole assumption that the optimal set of the variational inequality is nonempty.
23#
發(fā)表于 2025-3-25 14:55:57 | 只看該作者
A Note on Error Bounds for Convex and Nonconvex Programs,. We assume that .. satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [ 11 ] on the distance of a point to a convex set specified by inequalities.
24#
發(fā)表于 2025-3-25 18:48:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:25:09 | 只看該作者
,A Partitioned ∈-Relaxation Algorithm for Separable Convex Network Flow Problems, the nonlinear cost terms. The arcs are partitioned into two sets, one of which contains only arcs corresponding to strictly convex costs. The algorithm adjusts flows on the other arcs whenever possible. and terminates with primal-dual pairs that satisfy complementary slackness on the strictly conve
26#
發(fā)表于 2025-3-26 00:23:26 | 只看該作者
27#
發(fā)表于 2025-3-26 06:02:22 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:37 | 只看該作者
29#
發(fā)表于 2025-3-26 16:26:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:42:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巧家县| 锡林浩特市| 土默特右旗| 汉阴县| 舞阳县| 洪泽县| 庆阳市| 宁乡县| 南川市| 登封市| 寻甸| 衡阳县| 恩施市| 获嘉县| 罗城| 溧水县| 侯马市| 龙岩市| 开远市| 故城县| 桦甸市| 上高县| 琼海市| 鲁甸县| 长治县| 杨浦区| 武陟县| 古蔺县| 阳新县| 舞钢市| 清涧县| 贡嘎县| 波密县| 磐安县| 平阴县| 大城县| 大港区| 宜昌市| 上饶县| 扎赉特旗| 庆安县|