找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Micromagnetism; Andreas Prohl Textbook 2001 Springer Fachmedien Wiesbaden 2001 Direct Minimization.Micromagnetism.Nematic Li

[復(fù)制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 03:36:22 | 只看該作者
Direct Minimization of existing exchange energy contributions; this effect will be illustrated here for uniaxial materials, for the case of absent exterior fields .: . → ?., and . = 0. All results will be presented for . ? ?., but can be generalized to . ? ?. as well.
22#
發(fā)表于 2025-3-25 09:57:35 | 只看該作者
Sucrose and osmotic dehydration,; electromagnetic coupling effects are incorporated in the (MLLG) equation. Part II closes with the numerical analysis for the nematic liquid crystal problem which also imposes a non-convex constraint onto its solution.
23#
發(fā)表于 2025-3-25 13:52:38 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:24:24 | 只看該作者
Direct Minimizationtions can by rather costly, due to diverse patterns and scales of minimizing magnetizations. Moreover, they can blurr physical information in the case of existing exchange energy contributions; this effect will be illustrated here for uniaxial materials, for the case of absent exterior fields .: . →
26#
發(fā)表于 2025-3-26 03:26:57 | 只看該作者
27#
發(fā)表于 2025-3-26 06:57:34 | 只看該作者
Relaxed Micromagnetism using Young Measures non-convex, it is not weakly closed in ..(.; ?.), and a solution to (I.4) does not have to exist for uniaxial materials; cf. for instance [71]. An implication is that highly oscillatory minimizing sequences of . do not have weak limits in .. One way to overcome this problem is to convexify the anis
28#
發(fā)表于 2025-3-26 11:38:08 | 只看該作者
Summary and Outlookn magnetic recording, can have an enormous impact on future technologies. Their mathematical theory started with the introduction of the Landau-Lifshitz free energy; a numerical analysis of existing strategies to solve the corresponding minimization problem is presented in part I of this monograph.
29#
發(fā)表于 2025-3-26 15:26:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:45:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 13:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳市| 泰宁县| 绥滨县| 闽侯县| 镇康县| 河池市| 扶余县| 焉耆| 金沙县| 图木舒克市| 丽江市| 凉山| 隆回县| 应城市| 鄱阳县| 中山市| 汉阴县| 南丹县| 新宾| 青川县| 集贤县| 泽普县| 东光县| 金华市| 信丰县| 嘉义县| 连平县| 石家庄市| 鄂尔多斯市| 丹寨县| 宁津县| 星座| 梁平县| 兰坪| 当涂县| 平远县| 平利县| 义马市| 银川市| 乌兰县| 二手房|