找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods in Bifurcation Theory and Dissipative Structures; M. Kubí?ek,M. Marek Book 1983 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: energy
11#
發(fā)表于 2025-3-23 12:14:15 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:51 | 只看該作者
https://doi.org/10.1007/978-3-642-02943-1aspects of the study of such phenomena is the problem of describing self-organization, i.e., detailed study of stationary and/or time-dependent states evolving with changes of characteristic parameters. We can recognize two main approaches in the description of such systems—deterministic and stochas
13#
發(fā)表于 2025-3-23 19:09:22 | 只看該作者
Substances Containing C10H16...Zn mainly over the past 10 years by our research group. Relations among specific procedures are schematically shown in Fig. 5.1. Every procedure is denoted by its corresponding section number (or numbers when both LPS and DPS are involved). An increasing number of papers on the numerical methods discu
14#
發(fā)表于 2025-3-24 01:02:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:17:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:46:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:23:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:11:56 | 只看該作者
Multiplicity and Stability in Lumped-Parameter Systems (LPS),Differentiation of dynamic systems into lumped-parameter systems (LPS) and distributed-parameter systems (DPS) was discussed in Section 1.3. The phase space of LPS is a finite-dimensional space. Let us consider .-dimen-sional Euclidean space.
19#
發(fā)表于 2025-3-24 20:18:16 | 只看該作者
20#
發(fā)表于 2025-3-24 23:45:35 | 只看該作者
Development of Quasi-stationary Patterns with Changing Parameter,Let us consider a dynamical system which depends on a parameter .: . with specified initial conditions. Up until now, we have considered the parameter . to be fixed and independent of time ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙市| 揭东县| 博乐市| 南通市| 嘉义市| 万安县| 丹凤县| 鹤庆县| 保德县| 六枝特区| 封丘县| 延川县| 进贤县| 芒康县| 农安县| 正宁县| 曲周县| 姜堰市| 阳新县| 浪卡子县| 新干县| 防城港市| 广灵县| 建瓯市| 郴州市| 五家渠市| 马鞍山市| 郑州市| 修文县| 阿瓦提县| 西畴县| 清苑县| 斗六市| 武安市| 班戈县| 南澳县| 临高县| 安乡县| 桃源县| 三明市| 镇雄县|