找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for Linear Integral Equations; Prem K. Kythe,Pratap Puri Book 2002 Birkh?user Boston 2002 Integral equation.Integral

[復(fù)制鏈接]
樓主: cherub
31#
發(fā)表于 2025-3-26 23:50:38 | 只看該作者
https://doi.org/10.1007/978-3-540-85273-5uations. proofs most of the resets can be found in standard textbooks on integral equa tions, real and complex analysis, integral transforms, and numerical analysis. The notation used in this book, although standard, is also presented for clarification.
32#
發(fā)表于 2025-3-27 03:07:37 | 只看該作者
33#
發(fā)表于 2025-3-27 05:36:05 | 只看該作者
34#
發(fā)表于 2025-3-27 12:26:55 | 只看該作者
Helmut Laux,Matthias M. Schabelnherent ill-posedness. This property makes their numerical evaluation difficult; different tecniques are needed to compute such solutions. We shall discuss some of the well-known methods in this chapter.
35#
發(fā)表于 2025-3-27 16:51:15 | 只看該作者
Marktbewertung im Mehrperioden-Fall equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
36#
發(fā)表于 2025-3-27 20:13:13 | 只看該作者
Introduction,uations. proofs most of the resets can be found in standard textbooks on integral equa tions, real and complex analysis, integral transforms, and numerical analysis. The notation used in this book, although standard, is also presented for clarification.
37#
發(fā)表于 2025-3-28 00:14:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:49:23 | 只看該作者
39#
發(fā)表于 2025-3-28 07:41:45 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:57 | 只看該作者
Inversion of Laplace Transforms, equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成都市| 新竹市| 凤城市| 长沙县| 清苑县| 自贡市| 南通市| 溧水县| 石台县| 娱乐| 定远县| 青浦区| 和田市| 桃江县| 永德县| 焦作市| 兴隆县| 龙川县| 泾川县| 金山区| 瓮安县| 林口县| 米易县| 陇川县| 翁牛特旗| 灵武市| 卢龙县| 陇川县| 大理市| 洛浦县| 墨脱县| 巴林右旗| 京山县| 云安县| 东乡县| 清镇市| 科尔| 南投市| 松阳县| 东兰县| 琼海市|