找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Logic and Proof Theory; 5th Kurt G?del Collo Georg Gottlob,Alexander Leitsch,Daniele Mundici Conference proceedings 19971st e

[復(fù)制鏈接]
樓主: FERN
61#
發(fā)表于 2025-4-1 05:07:03 | 只看該作者
62#
發(fā)表于 2025-4-1 06:06:28 | 只看該作者
Reine Rechtslehre und Gesetzgebungstechnikw that .. is conservative over .. w.r.t. boolean combinations of .. sentences, for . ≥ 1. In particular, we give a positive answer to a question by R. Kaye, whether the provably recursive functions of .. are exactly the primitive recursive ones.
63#
發(fā)表于 2025-4-1 13:45:31 | 只看該作者
64#
發(fā)表于 2025-4-1 17:36:05 | 只看該作者
Zur Manich?ischen UrmenschlehreRice‘s Theorem says that every nontrivial semantic property of programs is undecidable. It this spirit we show the following: Every nontrivial absolute (gap, relative) counting property of circuits is UP-hard with respect to polynomial-time Turing reductions.
65#
發(fā)表于 2025-4-1 19:07:29 | 只看該作者
https://doi.org/10.1007/978-3-663-05108-4We prove that the strong Markov‘s rule with only set parameters is admissible in the full set theory with intuitionistic logic mis|The work was supported by Reseach Scientific Foundation of Russian Ministry of Transport
66#
發(fā)表于 2025-4-2 00:06:22 | 只看該作者
Resolution, inverse method and the sequent calculus,We discuss the general scheme of building resolution calculi (also called the inverse method) originating from S. Maslov and G. Mints. A survey of resolution calculi for various nonclassical logic is presented, along with several common properties these calculi possess.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝县| 苗栗市| 深水埗区| 滕州市| 佛教| 虞城县| 治多县| 揭东县| 崇州市| 东台市| 芦溪县| 普兰县| 东乡县| 武定县| 巩义市| 元江| 盐亭县| 开封县| 武冈市| 合水县| 罗田县| 扎兰屯市| 凤山县| 洪洞县| 奉节县| 台北市| 霍州市| 灵宝市| 阿图什市| 抚顺县| 满洲里市| 南城县| 公安县| 临夏县| 汶川县| 平昌县| 沙湾县| 台南县| 壤塘县| 鹿邑县| 宜城市|