找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Linguistics and Intelligent Text Processing; 13th International C Alexander Gelbukh Conference proceedings 2012 Springer-Verl

[復制鏈接]
樓主: 適婚女孩
11#
發(fā)表于 2025-3-23 13:34:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:07:31 | 只看該作者
A Fast Subspace Text Categorization Method Using Parallel Classifiers speed up document search and reduce classifier training times. The data available to us is frequently divided into several broad domains with many sub-category levels. Each of these domains of data constitutes a subspace which can be processed separately. In this paper, separate classifiers of the
13#
發(fā)表于 2025-3-23 18:22:46 | 只看該作者
Research on Text Categorization Based on a Weakly-Supervised Transfer Learning Methoding classification tasks in new area. Instead, we can take use of the already tagged documents in other domains to accomplish the automatic categorization task. By extracting linguistic information such as part-of-speech, semantic, co-occurrence of keywords, we construct a domain-adaptive transfer k
14#
發(fā)表于 2025-3-24 01:16:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:25 | 只看該作者
Clustering Short Text and Its Evaluationication, a variety of short text could be defined mainly in terms of their length (e.g. sentence, paragraphs) and type (e.g. scientific papers, newspapers). Finding a clustering method that is able to cluster short text in general is difficult. In this paper, we cluster 4 different corpora with diff
16#
發(fā)表于 2025-3-24 07:55:35 | 只看該作者
17#
發(fā)表于 2025-3-24 12:18:28 | 只看該作者
Combining Flat and Structured Approaches for Temporal Slot Filling or: How Much to Compress?n and temporal aggregation. As in many other NLP tasks, a key challenge lies in capturing relations between text elements separated by a long context. We have observed that features derived from a structured text representation can help compressing the context and reducing ambiguity. On the other ha
18#
發(fā)表于 2025-3-24 18:01:51 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:43 | 只看該作者
Automatically Generated Noun Lexicons for Event Extraction, they can be interpreted in an eventive or non-eventive reading). Therefore, weights representing the relative “eventiveness” of a noun can help for disambiguating event detection in texts..We applied our method on both French and English corpora. Our method has been applied to both French and Engl
20#
發(fā)表于 2025-3-25 01:37:16 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
称多县| 长沙市| 石家庄市| 伽师县| 永靖县| 合阳县| 黎城县| 漠河县| 永修县| 印江| 宜州市| 宝山区| 吴堡县| 申扎县| 阿鲁科尔沁旗| 牟定县| 莲花县| 禄劝| 镇平县| 白河县| 芜湖县| 陇西县| 铜陵市| 长白| 义乌市| 屏山县| 密云县| 西峡县| 北碚区| 新兴县| 吴堡县| 鄯善县| 珲春市| 油尖旺区| 莱芜市| 沙坪坝区| 宜兰市| 威信县| 班戈县| 曲靖市| 蓝田县|