找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 15th Annual Conferen Jyrki Kivinen,Robert H. Sloan Conference proceedings 2002 Springer-Verlag Berlin Heidel

[復制鏈接]
樓主: 審美家
31#
發(fā)表于 2025-3-26 23:46:52 | 只看該作者
https://doi.org/10.1007/978-3-531-91030-7als)..We then apply the above and some other results from the literature to Agnostic learning and give negative and positive results for Agnostic learning and PAC learning with malicious errors of the above classes.
32#
發(fā)表于 2025-3-27 03:23:22 | 只看該作者
Path Kernels and Multiplicative Updateseach node is one again. Finally we discuss the use of regular expressions for speeding up the kernel and re-normalization computation. In particular we rewrite the multiplicative algorithms that predict as well as the best pruning of a series parallel graph in terms of efficient kernel computations.
33#
發(fā)表于 2025-3-27 06:52:43 | 只看該作者
Predictive Complexity and Informationve complexity into sequences of essentially bigger predictive complexity. A concept of amount of predictive information .(.: .) is studied. We show that this information is non-commutative in a very strong sense and present asymptotic relations between values .(.: .), .(.: .), .(.) and .(.).
34#
發(fā)表于 2025-3-27 09:30:58 | 只看該作者
A Second-Order Perceptron Algorithmms, we also design a refined version of the second-order Perceptron algorithm which adaptively sets the value of this parameter. For this second algorithm we are able to prove mistake bounds corresponding to a nearly optimal constant setting of the parameter.
35#
發(fā)表于 2025-3-27 16:01:55 | 只看該作者
36#
發(fā)表于 2025-3-27 17:51:40 | 只看該作者
Merging Uniform Inductive Learnersriteria in the uniform model are considered. The main result is that for any pair (., .) of different inference criteria considered here there exists a fixed set of descriptions of learning problems from ., such that its union with any uniformly .-learnable collection is uniformly .-learnable, but no longer uniformly .-learnable.
37#
發(fā)表于 2025-3-28 01:22:22 | 只看該作者
38#
發(fā)表于 2025-3-28 02:51:54 | 只看該作者
PAC Bounds for Multi-armed Bandit and Markov Decision ProcessesProcesses. This is done essentially by simulating Value Iteration, and in each iteration invoking the multi-armed bandit algorithm. Using our PAC algorithm for the multi-armed bandit problem we improve the dependence on the number of actions.
39#
發(fā)表于 2025-3-28 09:12:32 | 只看該作者
Bounds for the Minimum Disagreement Problem with Applications to Learning Theoryals)..We then apply the above and some other results from the literature to Agnostic learning and give negative and positive results for Agnostic learning and PAC learning with malicious errors of the above classes.
40#
發(fā)表于 2025-3-28 11:41:10 | 只看該作者
Erkenntnisbeitrag der Untersuchung,bounds on generalization error in terms of localized Rademacher complexities. This allows us to prove new results about generalization performance for convex hulls in terms of characteristics of the base class. As a byproduct, we obtain a simple proof of some of the known bounds on the entropy of convex hulls.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 03:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
博乐市| 克山县| 垣曲县| 游戏| 得荣县| 铜山县| 公安县| 象州县| 广德县| 鞍山市| 宜城市| 广宗县| 民乐县| 射洪县| 邵阳县| 古交市| 高邑县| 双江| 蕲春县| 屏东县| 洛南县| 荆门市| 柯坪县| 松溪县| 廊坊市| 界首市| 铜川市| 垣曲县| 仪陇县| 苗栗县| 屏南县| 江西省| 乳山市| 营山县| 河池市| 丰宁| 平泉县| 昌乐县| 灵川县| 桐梓县| 晋州市|