找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Science; Third IFIP TC 12 Int Aravindan Chandrabose,Ulrich Furbach,Anand Kumar M Conference proceedings

[復制鏈接]
樓主: 欺侮
11#
發(fā)表于 2025-3-23 13:11:19 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:55 | 只看該作者
15#
發(fā)表于 2025-3-24 03:54:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:13 | 只看該作者
Effective Emotion Recognition from Partially Occluded Facial Images Using Deep Learningal muscles irrespective of pose, face shape, illumination, and image resolution is very much essential for serving the purpose. However, extraction and analysis of facial and appearance based features fails with improper face alignment and occlusions. Few existing works on these problems mainly dete
17#
發(fā)表于 2025-3-24 12:04:09 | 只看該作者
Emotion Recognition in Sentences - A Recurrent Neural Network Approachmentioned data set and an accuracy of 91.6% for the prediction of degree of emotion for a sentence. Additionally, every sentence is associated with a degree of the dominant emotion. One can infer that a degree of emotion means the extent of the emphasis of an emotion. Although, more than one sentenc
18#
發(fā)表于 2025-3-24 16:24:45 | 只看該作者
Tamil Paraphrase Detection Using Encoder-Decoder Neural Networkst systems. The system was trained and evaluated on DPIL@FIRE2016 Shared Task dataset. To our knowledge, ours is the first deep learning model which validates the training instances of both the subtask-1 and subtask-2 dataset of DPIL shared task.
19#
發(fā)表于 2025-3-24 19:49:14 | 只看該作者
Trustworthy User Recommendation Using Boosted Vector Similarity Measureposed model in terms of accuracy measures such as precision@k and recall@k and error measures, namely, MAE, MSE and RMSE is discussed in this paper. The evaluation shows that the proposed system outperforms other recommender system with minimum MAE and RMSE.
20#
發(fā)表于 2025-3-25 01:26:02 | 只看該作者
Sensitive Keyword Extraction Based on Cyber Keywords and LDA in Twitter to Avoid Regretshe originality of this research work lies in identifying sensitive keywords that reveal Tweeter’s Personally Identifiable Information through the novel Topic Keyword Extractor. The potential sensitive topics in which the social media users frequently exhibit personal information and unintended infor
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 14:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
越西县| 鹤山市| 阳西县| 大新县| 湘阴县| 浦东新区| 新乡市| 鄯善县| 广宗县| 塔城市| 高淳县| 海阳市| 会宁县| 新巴尔虎右旗| 西青区| 金门县| 绵竹市| 崇文区| 元氏县| 杭锦旗| 望江县| 深圳市| 衡东县| 六枝特区| 文安县| 社会| 靖宇县| 丽水市| 三门县| 香河县| 墨脱县| 营山县| 义马市| 宣城市| 和顺县| 乌恰县| 延安市| 安岳县| 张家川| 楚雄市| 巴青县|