找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence; 11th International J Juan Julián Merelo,Jonathan Garibaldi,Kurosh Madan Conference proceedings 2021 Springer Na

[復(fù)制鏈接]
樓主: broach
41#
發(fā)表于 2025-3-28 15:58:23 | 只看該作者
Niching-Based Feature Selection with Multi-tree Genetic Programming for Dynamic Flexible Job Shop Sc and by comparing the different methods in a larger experimental setup. The results show that feature selection can generate better rules in most of the cases while also being more efficient to in a production environment.
42#
發(fā)表于 2025-3-28 21:48:30 | 只看該作者
Correlation Analysis Via Intuitionistic Fuzzy Modal and Aggregation Operatorsity and possibility modal operators along with intuitionistic fuzzy t-norms and t-conorms are investigated by verifying the conditions under which A-CC preserve the main properties related to conjugate and complement operations performed on A-IFS.
43#
發(fā)表于 2025-3-28 23:23:45 | 只看該作者
44#
發(fā)表于 2025-3-29 03:48:23 | 只看該作者
Towards a Class-Aware Information Granulation for Graph Embedding and Classificationormance improvements when considering also the ground-truth class labels in the information granulation procedure. Furthermore, since the granulation procedure is based on random walks, it is also very appealing in Big Data scenarios.
45#
發(fā)表于 2025-3-29 10:27:24 | 只看該作者
Deep Convolutional Neural Network Processing of Images for Obstacle Avoidancein the lab by a human operator. The network learned the correct responses of left, right, or straight for each of the images with a very low error rate when checked on test images. In addition, ten tests on the actual robot showed that it could successfully and consistently drive through the lab while avoiding obstacles.
46#
發(fā)表于 2025-3-29 14:52:42 | 只看該作者
47#
發(fā)表于 2025-3-29 16:09:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:08 | 只看該作者
49#
發(fā)表于 2025-3-30 02:15:40 | 只看該作者
https://doi.org/10.1007/978-3-642-69591-9n opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also formulate loss functions that are later used in a deep learning context. Proposed methods are theoretically analyzed and experimentally verified.
50#
發(fā)表于 2025-3-30 07:37:40 | 只看該作者
CVaR Q-Learningn opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also formulate loss functions that are later used in a deep learning context. Proposed methods are theoretically analyzed and experimentally verified.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
共和县| 翁源县| 寿阳县| 丰都县| 建水县| 仁怀市| 青田县| 息烽县| 光泽县| 柘荣县| 新巴尔虎左旗| 舒兰市| 兰西县| 察隅县| 衡阳县| 黄大仙区| 治多县| 惠安县| 金乡县| 阿尔山市| 麻栗坡县| 长沙市| 柳江县| 清水县| 蛟河市| 襄垣县| 田东县| 胶南市| 华坪县| 游戏| 方山县| 靖西县| 浏阳市| 南京市| 威宁| 平陆县| 泾川县| 陇西县| 鹤峰县| 石屏县| 监利县|