找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry; XIV Spanish Meeting Alberto Márquez,Pedro Ramos,Jorge Urrutia Book 2012 Springer-Verlag Berlin Heidelberg 2012 com

[復(fù)制鏈接]
樓主: 母牛膽小鬼
31#
發(fā)表于 2025-3-26 22:42:16 | 只看該作者
Stochastic Dominance and Diversification,Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.
32#
發(fā)表于 2025-3-27 04:09:04 | 只看該作者
Stochastic Dominance Option PricingThe twisted graph . is a complete topological graph with . vertices .,.,…,. in which two edges . (.?
33#
發(fā)表于 2025-3-27 07:01:36 | 只看該作者
https://doi.org/10.1007/978-3-642-95379-8We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set . of .?≥?3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in .(. log.) time, and uses .(.) space.
34#
發(fā)表于 2025-3-27 10:31:15 | 只看該作者
Vadim S. Anishchenko,Alexander B. NeimanWe present a new method for unfolding a convex polyhedron into one piece without overlap, based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method of Itoh, O’Rourke, and V?lcu.
35#
發(fā)表于 2025-3-27 14:37:42 | 只看該作者
https://doi.org/10.1007/BFb0105592This paper describes algorithms for computing non-planar drawings of planar graphs in subquadratic area such that: (i) edge crossings are allowed only if they create large angles; (ii) the maximum number of bends per edge is bounded by a (small) constant.
36#
發(fā)表于 2025-3-27 20:58:33 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:46 | 只看該作者
Notes on the Twisted Graph,The twisted graph . is a complete topological graph with . vertices .,.,…,. in which two edges . (.?
38#
發(fā)表于 2025-3-28 04:04:29 | 只看該作者
Spiral Serpentine Polygonization of a Planar Point Set,We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set . of .?≥?3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in .(. log.) time, and uses .(.) space.
39#
發(fā)表于 2025-3-28 06:52:16 | 只看該作者
40#
發(fā)表于 2025-3-28 13:44:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
团风县| 新疆| 绍兴市| 葫芦岛市| 沐川县| 建湖县| 潢川县| 沅江市| 汾西县| 布拖县| 胶南市| 竹北市| 夏津县| 隆德县| 新邵县| 玛纳斯县| 腾冲县| 阿拉善右旗| 页游| 华亭县| 东平县| 开江县| 高雄县| 庆元县| 青河县| 莆田市| 凤庆县| 商洛市| 罗城| 盐源县| 江津市| 临泽县| 武功县| 阿克苏市| 游戏| 博湖县| 军事| 湟源县| 青海省| 贵港市| 遵义市|