找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Financial Mathematics using MATHEMATICA?; Optimal Trading in S Srdjan Stojanovic Textbook 2003 S. Stojanovic 2003 Mathematica

[復(fù)制鏈接]
樓主: Encomium
11#
發(fā)表于 2025-3-23 10:31:09 | 只看該作者
12#
發(fā)表于 2025-3-23 14:26:37 | 只看該作者
13#
發(fā)表于 2025-3-23 20:40:26 | 只看該作者
https://doi.org/10.1007/978-3-322-85217-5ons. Their possible exercise date is fixed in advance. On the other hand, the fact is that options that are usually traded on the option market can be exercised at any time before the expiry, although most often they are not. Such options are called American options. As seen so far, the problem of p
14#
發(fā)表于 2025-3-23 22:42:42 | 只看該作者
https://doi.org/10.1007/978-3-322-85217-5ng, and trading of stocks and options. Chapter 5 and 6 present some sophisticated ways as to how to analyze the market from the point of view of estimating the perceived stock volatilities. In Chapter 7 it was shown how mathematics and .? can be used for synthesizing the available information about
15#
發(fā)表于 2025-3-24 05:12:31 | 只看該作者
https://doi.org/10.1007/978-1-4612-0043-7Mathematica; Options; Portfolio; Portfolio Diversification; Portfolio Optimization; STATISTICA; Stochastic
16#
發(fā)表于 2025-3-24 07:51:34 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:47 | 只看該作者
Optimal Portfolio Rules,The classical portfolio theory goes back to Markowitz and his mean-variance portfolio theory. Portfolio theory based on stochastic control goes back to Merton’s classical paper in the early 70s [see, e.g., Ch. 5 of 46].
18#
發(fā)表于 2025-3-24 16:57:15 | 只看該作者
19#
發(fā)表于 2025-3-24 21:59:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:05 | 只看該作者
Computational Financial Mathematics using MATHEMATICA?Optimal Trading in S
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 14:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永兴县| 隆德县| 颍上县| 广德县| 山阳县| 白水县| 秭归县| 宿州市| 沙湾县| 科技| 兴安盟| 东方市| 申扎县| 清苑县| 修武县| 土默特右旗| 泰州市| 腾冲县| 祁门县| 闻喜县| 瓮安县| 利辛县| 宁阳县| 五台县| 上高县| 本溪市| 乐业县| 田阳县| 金昌市| 长治县| 贺州市| 大安市| 霍州市| 剑河县| 天祝| 蒙自县| 桐庐县| 清新县| 肇庆市| 咸丰县| 洞口县|