找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Epigenomics and Epitranscriptomics; Pedro H. Oliveira Book 2023 The Editor(s) (if applicable) and The Author(s), under exclu

[復(fù)制鏈接]
樓主: Abridge
21#
發(fā)表于 2025-3-25 06:08:26 | 只看該作者
https://doi.org/10.1007/978-3-642-93418-6utional layers to achieve simultaneously a large sequence context while interpreting the DNA sequence at single base pair resolution. Using transfer learning of convolutional weights trained to predict a compendium of chromatin features across cell types allows deepC to predict cell type-specific ch
22#
發(fā)表于 2025-3-25 07:32:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:07:48 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:44 | 只看該作者
https://doi.org/10.1007/978-3-658-28778-8cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
25#
發(fā)表于 2025-3-25 22:52:20 | 只看該作者
Walter Bien,Angela Hartl,Markus Teubnerse of methylation information from neighboring sites to recover partially observed methylation patterns. Our method and software are proven to be faster and more accurate among all evaluated. Ultimately, our method allows for a more streamlined monitoring of epigenetic changes within cellular populations and their putative role in disease.
26#
發(fā)表于 2025-3-26 02:23:16 | 只看該作者
Integrating Single-Cell Methylome and Transcriptome Data with MAPLE,cts activity for each gene, which can be used to integrate with transcriptome data from the same cell types. Here, we provide an overview of our method and detailed guidance on how to use it for the integration of methylome and transcriptome data.
27#
發(fā)表于 2025-3-26 08:07:23 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:47 | 只看該作者
1064-3745 ation advice from the experts.This volume details state-of-the-art computational methods designed to manage, analyze, and generally leverage epigenomic and epitranscriptomic data. Chapters guide readers through fine-mapping and quantification of modifications, visual analytics, imputation methods, s
29#
發(fā)表于 2025-3-26 16:08:33 | 只看該作者
30#
發(fā)表于 2025-3-26 19:04:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳新县| 枝江市| 永新县| 隆回县| 河西区| 新疆| 乌鲁木齐市| 甘南县| 宜黄县| 五家渠市| 英吉沙县| 昌黎县| 武功县| 德保县| 凤阳县| 馆陶县| 错那县| 江西省| 甘肃省| 仁化县| 和硕县| 象州县| 潍坊市| 缙云县| 阳东县| 宁河县| 常宁市| 湘西| 揭东县| 丰镇市| 兴宁市| 海盐县| 彰化县| 茌平县| 平罗县| 堆龙德庆县| 清徐县| 安宁市| 丰台区| 如东县| 调兵山市|