找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; International MICCAI Noemi Gyori,Jana Hutter,Fan Zhang Conference proceedings 2021 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: mentor
21#
發(fā)表于 2025-3-25 05:23:02 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:53 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:32 | 只看該作者
Towards Learned Optimal ,-Space Sampling in Diffusion MRIious results, the present work consolidates the above strategies into a unified estimation framework, in which the optimization is carried out with respect to both estimation model and sampling design .. The proposed solution offers substantial improvements in the quality of signal estimation as wel
24#
發(fā)表于 2025-3-25 16:31:09 | 只看該作者
25#
發(fā)表于 2025-3-25 21:13:29 | 只看該作者
26#
發(fā)表于 2025-3-26 00:35:17 | 只看該作者
27#
發(fā)表于 2025-3-26 07:02:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:17:04 | 只看該作者
Diffusion MRI Fiber Orientation Distribution Function Estimation Using Voxel-Wise Spherical U-Net the signals corresponding to individual fibers. We compared our model with another deep learning approach based on a 3D convolutional neural network and a state-of-the-art approach—multi-shell multi-tissue constrained spherical deconvolution, on real data from Human Connectome Project and synthetic
29#
發(fā)表于 2025-3-26 12:46:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:10:10 | 只看該作者
DW-MRI Microstructure Model of Models Captured Via Single-Shell Bottleneck Deep Learningn to map a common basis among DW-MRI modeling approaches. We propose to capture a compact feature space in the form of a bottleneck that preserves common features to all methods and retrieve information from single shell DW-MRI. We train on 3D patches of 40 Human Connectome Project (HCP) subjects (.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 07:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天全县| 温州市| 左云县| 金山区| 蕉岭县| 安多县| 永安市| 四会市| 历史| 英吉沙县| 岳阳县| 井陉县| 黄龙县| 乳山市| 阿克陶县| 公主岭市| 台北市| 松滋市| 奇台县| 昭觉县| 西昌市| 侯马市| 湖南省| 绵阳市| 卢龙县| 凭祥市| 安多县| 施秉县| 瓦房店市| 通江县| 沙湾县| 兰溪市| 甘洛县| 喜德县| 内丘县| 黑龙江省| 藁城市| 五家渠市| 河源市| 武平县| 大英县|