找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Data and Social Networks; 9th International Co Sriram Chellappan,Kim-Kwang Raymond Choo,NhatHai P Conference proceedings 2020

[復(fù)制鏈接]
樓主: 解放
31#
發(fā)表于 2025-3-26 23:42:28 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:43:46 | 只看該作者
An Analysis of Users Engagement on Twitter During the COVID-19 Pandemic: Topical Trends and Sentimenstate-of-the-art deep learning techniques, the trending topics within the tweets on monthly-bases, including their sentiment and user’s perception, were analyzed. This study highlights the change of the public behavior and concerns during the pandemic. Users expressed their concerns on health servic
34#
發(fā)表于 2025-3-27 10:29:38 | 只看該作者
35#
發(fā)表于 2025-3-27 14:35:33 | 只看該作者
36#
發(fā)表于 2025-3-27 20:04:48 | 只看該作者
Group Influence Maximization in Social Networksstly, experiments are carried out to demonstrate that our CMC and IRIS both outperform the known baselines including Maximum Coverage and Maximum Out-degree algorithms in the average number of activated groups under IC model.
37#
發(fā)表于 2025-3-27 21:55:37 | 只看該作者
Maximum Channel Access Probability Based on Post-Disaster Ground Terminal Distribution Densityred into a convex problem by analyzing objective function. An interior-point method is adopted to solve this problem. Extensive simulations are performed to evaluate the model by optimizing the UAV speed in different regions. The results show that the proposed new scheme outperforms the one with con
38#
發(fā)表于 2025-3-28 05:08:48 | 只看該作者
39#
發(fā)表于 2025-3-28 09:17:55 | 只看該作者
Sriram Chellappan,Kim-Kwang Raymond Choo,NhatHai P
40#
發(fā)表于 2025-3-28 14:09:53 | 只看該作者
https://doi.org/10.1007/978-3-030-75622-2between users in social. Our model supplies the principle of organizing interactions as a graph, combines information from social network and all kind of relations in the heterogeneous knowledge graph. The model is evaluated on real world datasets to demonstrate this method’s effectiveness.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莒南县| 成武县| 清苑县| 大邑县| 五台县| 务川| 吴桥县| 蒙自县| 郸城县| 阳泉市| 渝中区| 宁国市| 荥阳市| 谷城县| 靖安县| 浑源县| 上栗县| 河津市| 惠水县| 巴林右旗| 温泉县| 古田县| 灵台县| 枞阳县| 什邡市| 徐州市| 望谟县| 通辽市| 宜都市| 富川| 三明市| 富源县| 乐东| 深水埗区| 上思县| 剑川县| 绵竹市| 灵武市| 鹿邑县| 罗源县| 定远县|