找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation, Physics and Beyond; International Worksh Michael J. Dinneen,Bakhadyr Khoussainov,André Nies Book 2012 Springer-Verlag GmbH Ber

[復制鏈接]
樓主: Cataplexy
51#
發(fā)表于 2025-3-30 11:19:17 | 只看該作者
Fundamentals of Topological Insulators,mputable functions, the existence of universal machines and the invariance under the choice of machine. Recently, the notion of descriptional complexity for finite-state computable functions has been introduced by Calude et al. For the latter theory, one cannot rely on the existence of universal mac
52#
發(fā)表于 2025-3-30 15:08:50 | 只看該作者
https://doi.org/10.1007/978-3-658-11811-2d in classical language, yield major algorithmic randomness notions. He proved several results connecting constructive analysis and randomness that were rediscovered only much later..We give an overview in mostly chronological order. We sketch a proof that Demuth’s notion of Denjoy sets (or reals) c
53#
發(fā)表于 2025-3-30 16:58:12 | 只看該作者
54#
發(fā)表于 2025-3-30 21:15:30 | 只看該作者
Dynamic correlations in quantum magnets, a first order formula on the integers and decides (after a finite number of computations and always with a right answer) whether this formula is true or false. There are also many other limitations of usual computing theory that can be seen as generalisations of G?del incompleteness theorem: for ex
55#
發(fā)表于 2025-3-31 03:59:23 | 只看該作者
Luttinger liquids: the basic concepts,ere a computable bound on the use function is explicitly specified. This elaboration enables us to deal with the notion of asymptotic behavior in a manner like in computational complexity theory, while staying in computability theory. We apply the elaboration to sets which appear in the statistical
56#
發(fā)表于 2025-3-31 05:52:47 | 只看該作者
57#
發(fā)表于 2025-3-31 11:25:52 | 只看該作者
58#
發(fā)表于 2025-3-31 15:31:03 | 只看該作者
59#
發(fā)表于 2025-3-31 19:12:30 | 只看該作者
Computation, Physics and Beyond978-3-642-27654-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
60#
發(fā)表于 2025-3-31 22:52:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 01:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巢湖市| 武鸣县| 潞西市| 梅河口市| 凌云县| 沾化县| 峨边| 蕲春县| 溧阳市| 乃东县| 马龙县| 新巴尔虎左旗| 鸡西市| 万州区| 平阴县| 分宜县| 钦州市| 成武县| 安多县| 襄垣县| 安庆市| 隆昌县| 五莲县| 原阳县| 云安县| 永修县| 湘潭县| 方山县| 南雄市| 集安市| 岫岩| 仪征市| 腾冲县| 密云县| 新闻| 江华| 甘谷县| 朔州市| 淳化县| 竹溪县| 乌鲁木齐市|