找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation of Curves and Surfaces; Wolfgang Dahmen,Mariano Gasca,Charles A. Micchelli Book 1990 Kluwer Academic Publishers 1990 3D.Approx

[復(fù)制鏈接]
樓主: otitis-externa
31#
發(fā)表于 2025-3-26 22:04:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:34:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:54:36 | 只看該作者
Superconvergence Relations, FESR and Duality of wavelets by multiresolution analysis. This paper summarizes some of the results obtained in [1] on the convergence of stationary subdivision and the structure of the limiting surface and relates them to the above topics.
34#
發(fā)表于 2025-3-27 10:03:38 | 只看該作者
35#
發(fā)表于 2025-3-27 15:05:50 | 只看該作者
The S-matrix: From Heisenberg Till Nowpresentation schemes used within these systems nevertheless differ much with regard to the types of polynomial bases and the maximum polynomial degrees provided. Bernstein-Bézier, Schoenberg-B-Spline, Hermite-Coons type basis functions are frequently used in different systems. Polynomial degrees var
36#
發(fā)表于 2025-3-27 21:42:21 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:04 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Taylorions of the notion of .-splines to the multi-variable setting in the literature, very little is known at this writing on the structure and theory of all compactly supported smooth piecewise polynomial functions on a preassigned grid partition Δ in ?., . > 1, unless Δ is perfectly regular. While we d
38#
發(fā)表于 2025-3-28 03:21:57 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Taylorpolating or approximating function preserving some convex constraints such as monotonicity or convexity of given data. Monovariate shape preserving interpolation schemes and related algorithms, in particular of the . type, are considered. A short survey of local methods to interpolate surfaces under
39#
發(fā)表于 2025-3-28 07:10:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:35:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全南县| 崇礼县| 台湾省| 思茅市| 叶城县| 阜南县| 阿鲁科尔沁旗| 南岸区| 七台河市| 垦利县| 泾源县| 北海市| 贵定县| 普陀区| 子长县| 大埔区| 连州市| 铜山县| 巴东县| 罗江县| 肇庆市| 曲水县| 九龙县| 南皮县| 江门市| 大兴区| 涟水县| 中山市| 开阳县| 车险| 永川市| 体育| 朝阳区| 时尚| 会东县| 望都县| 锡林郭勒盟| 凉城县| 浦城县| 浮梁县| 桂东县|