找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復制鏈接]
樓主: 信賴
31#
發(fā)表于 2025-3-26 23:51:49 | 只看該作者
32#
發(fā)表于 2025-3-27 04:58:29 | 只看該作者
Book 2002relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cr
33#
發(fā)表于 2025-3-27 07:26:39 | 只看該作者
0893-3405 n computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cr978-1-4613-5293-8978-1-4615-0897-7Series ISSN 0893-3405
34#
發(fā)表于 2025-3-27 10:42:27 | 只看該作者
Approximation Algorithms,l time algorithms to find approximately shortest nonzero vectors in a lattice, or lattice vectors approximately closest to a given target point. The approximation factor achieved is exponential in the rank of the lattice. In Section 1 we start with an algorithm to solve SVP in dimension 2. For the s
35#
發(fā)表于 2025-3-27 17:26:27 | 只看該作者
36#
發(fā)表于 2025-3-27 17:46:05 | 只看該作者
Shortest Vector Problem,to find the shortest nonzero vector in the lattice generated by . . In Chapter 3 we have already studied another important algorithmic problem on lattices: the closest vector problem (CVP). In CVP, in addition to the lattice basis ., one is given a target vector ., and the goal is to find the lattic
37#
發(fā)表于 2025-3-27 22:31:36 | 只看該作者
38#
發(fā)表于 2025-3-28 02:44:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:10:48 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
Cryptographic Functions,n cryptography is that of secret communication: two parties want to communicate with each other, and keep the conversation private, i.e., no one, other than the two legitimate parties, should be able to get any information about the messages being exchanged. This secrecy goal can be achieved if the
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三门县| 滕州市| 斗六市| 定远县| 长宁区| 长春市| 云林县| 清涧县| 武隆县| 青海省| 高淳县| 朔州市| 贵南县| 洪湖市| 益阳市| 枞阳县| 三门县| 儋州市| 西乌珠穆沁旗| 藁城市| 麻栗坡县| 韶山市| 淮北市| 汉中市| 阜宁县| 桑植县| 镇宁| 瑞金市| 娱乐| 临海市| 宣恩县| 吴旗县| 双江| 庆元县| 策勒县| 宣城市| 潞西市| 隆化县| 舒城县| 衡山县| 遂溪县|