找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Approximation; In Memory of Ker-I K Ding-Zhu Du,Jie Wang Book 2020 Springer Nature Switzerland AG 2020 real functions.comple

[復制鏈接]
樓主: HAVEN
31#
發(fā)表于 2025-3-27 00:16:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:37:02 | 只看該作者
33#
發(fā)表于 2025-3-27 06:52:40 | 只看該作者
34#
發(fā)表于 2025-3-27 09:45:30 | 只看該作者
35#
發(fā)表于 2025-3-27 14:37:33 | 只看該作者
36#
發(fā)表于 2025-3-27 18:20:23 | 只看該作者
37#
發(fā)表于 2025-3-27 23:38:03 | 只看該作者
David Van Horn,Harry G. Mairsonnitions of submodular functions and their connection to scheduling models. Based on the classification of problem features, we conclude different scheduling models, applications of these scheduling scenarios, approaches of submodular optimization, and the performance of corresponding algorithms. It
38#
發(fā)表于 2025-3-28 03:20:15 | 只看該作者
Analysis of Multithreaded Programsnable to satisfy the Quality of Service (QoS) for many applications, especially for areas with real-time, reliability and security. The edge computing as an extension of the cloud computing is introduced, which lies in its ability to transfer the sensitive data from cloud to the edge for increasing
39#
發(fā)表于 2025-3-28 08:49:42 | 只看該作者
40#
發(fā)表于 2025-3-28 11:27:36 | 只看該作者
Farkas-Based Tree Interpolationhe double-greedy technique introduced by Buchbinder et al. [.]. Prior work has shown that this technique is very effective. This paper surveys on double-greedy algorithms for maximizing non-monotone submodular functions from discrete domains of sets and integer lattices to continuous domains.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
花垣县| 阳城县| 青铜峡市| 平果县| 嵩明县| 大姚县| 贵定县| 绍兴县| 舞阳县| 邮箱| 曲松县| 抚州市| 高雄市| 武平县| 思茅市| 穆棱市| 安宁市| 秦皇岛市| 辽阳县| 秭归县| 四平市| 长垣县| 青铜峡市| 新郑市| 石景山区| 江门市| 台湾省| 顺义区| 克东县| 乐陵市| 蒙山县| 个旧市| 淄博市| 吴忠市| 顺义区| 临西县| 朝阳县| 海宁市| 晋江市| 炎陵县| 当阳市|