找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Multiplication; Serge Lang Book 1983 Springer-Verlag New York Inc. 1983 Abelian varieties.Abelian variety.Finite.Komplexe Multipli

[復(fù)制鏈接]
樓主: thyroidectomy
21#
發(fā)表于 2025-3-25 07:00:59 | 只看該作者
22#
發(fā)表于 2025-3-25 09:23:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:02 | 只看該作者
Analytic Complex Multiplication, admits a Riemann form, and such a projective embedding is obtained by projective coordinates given by theta functions. We shall not need to know anything about such theta functions aside from their existence. An . is a complex torus which admits a Riemann form.
24#
發(fā)表于 2025-3-25 19:25:47 | 只看該作者
Georges Bastin,Jean-Michel Coroneader should end up knowing the same basic theorems. Because of my background, I use the terminology of Weil (generic points when needed), and the language of reduction mod . is that of Shimura. I have recalled with proofs some elementary definitions and properties, and without proof some of the more advanced results in this direction.
25#
發(fā)表于 2025-3-25 21:21:28 | 只看該作者
26#
發(fā)表于 2025-3-26 02:56:19 | 只看該作者
Patricia E. Rao,Daniel J. Kroonre of Langlands concerning the conjugation of Shimura varieties [Lglds]. Tate reformulates the conjecture in terms of a “type transfer”. The first two sections of the chapter give the general algebraic number theory setting for this type transfer, and the final sections give the application to the abelian varieties with complex multiplication.
27#
發(fā)表于 2025-3-26 04:28:30 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:24 | 只看該作者
29#
發(fā)表于 2025-3-26 15:08:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:07 | 只看該作者
0072-7830 lication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to mak
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 娱乐| 宜川县| 济南市| 玉林市| 广平县| 洛隆县| 凤翔县| 云安县| 辽宁省| 白河县| 昆山市| 康定县| 峨山| 青神县| 调兵山市| 白沙| 靖远县| 定陶县| 天峻县| 昌乐县| 和平区| 通山县| 兴仁县| 股票| 怀集县| 绥阳县| 祁阳县| 霸州市| 赣州市| 仙桃市| 石城县| 通河县| 苍梧县| 金乡县| 天镇县| 连城县| 宜城市| 安平县| 大英县| 义马市|