找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Multiplication; Serge Lang Book 1983 Springer-Verlag New York Inc. 1983 Abelian varieties.Abelian variety.Finite.Komplexe Multipli

[復制鏈接]
查看: 7397|回復: 41
樓主
發(fā)表于 2025-3-21 17:17:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Multiplication
編輯Serge Lang
視頻videohttp://file.papertrans.cn/232/231476/231476.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Complex Multiplication;  Serge Lang Book 1983 Springer-Verlag New York Inc. 1983 Abelian varieties.Abelian variety.Finite.Komplexe Multipli
描述The small book by Shimura-Taniyama on the subject of complex multi- is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi- plication, are advised to look first at the two main theorems, Chapter 3, §6 and Chapter 4, §1, as well as the rest of Chapter 4. The applications of Chapter6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu- script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic C
出版日期Book 1983
關鍵詞Abelian varieties; Abelian variety; Finite; Komplexe Multiplikation; algebra; congruence; construction; ell
版次1
doihttps://doi.org/10.1007/978-1-4612-5485-0
isbn_softcover978-1-4612-5487-4
isbn_ebook978-1-4612-5485-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag New York Inc. 1983
The information of publication is updating

書目名稱Complex Multiplication影響因子(影響力)




書目名稱Complex Multiplication影響因子(影響力)學科排名




書目名稱Complex Multiplication網絡公開度




書目名稱Complex Multiplication網絡公開度學科排名




書目名稱Complex Multiplication被引頻次




書目名稱Complex Multiplication被引頻次學科排名




書目名稱Complex Multiplication年度引用




書目名稱Complex Multiplication年度引用學科排名




書目名稱Complex Multiplication讀者反饋




書目名稱Complex Multiplication讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:24:05 | 只看該作者
Some Algebraic Properties of Abelian Varieties, situation, and we assume that the reader is acquainted with the general theory of abelian varieties. No matter whether the reader picks up the basic properties from my book on the subject (after Weil), Mumford, Shimura (for reduction mod .), or the foundations laid by the Grothendieck school, the r
板凳
發(fā)表于 2025-3-22 03:34:11 | 只看該作者
Algebraic Complex Multiplication,then the Frobenius endomorphism of the variety mod . can be represented as the reduction mod p of an element in that ring, which is, say, the ring of integers in a number field K. If π is that element, then a basic theorem gives the ideal factorization of π in .. We have followed Shimura-Taniyama fo
地板
發(fā)表于 2025-3-22 08:04:16 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:12:03 | 只看該作者
7#
發(fā)表于 2025-3-22 20:12:45 | 只看該作者
8#
發(fā)表于 2025-3-23 00:55:38 | 只看該作者
Case Study: Control of Navigable Rivers,s. Let . be a vector space of dimension . over the complex numbers. Let Λ be a lattice in .. The quotient complex analytic group ./Λ is called a .. We assume known the basic facts concerning Riemann forms and the projective embedding of such toruses. A (non-degenerate) . . on ./Λ is an alternating n
9#
發(fā)表于 2025-3-23 04:22:02 | 只看該作者
10#
發(fā)表于 2025-3-23 05:59:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-30 04:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
保德县| 内黄县| 蒲城县| 朔州市| 新昌县| 瑞金市| 全椒县| 永平县| 阳西县| 瑞丽市| 晋江市| 汉阴县| 伊宁市| 二连浩特市| 乌拉特中旗| 淳安县| 翼城县| 四平市| 治多县| 双流县| 府谷县| 镇远县| 墨竹工卡县| 民勤县| 建宁县| 武定县| 连州市| 清水河县| 娱乐| 沅江市| 九龙城区| 珲春市| 佳木斯市| 竹北市| 庆元县| 青州市| 奉新县| 黑水县| 肥西县| 大悟县| 白朗县|