找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Motions and Chaos in Nonlinear Systems; Valentin Afraimovich,José António Tenreiro Machado Book 2016 Springer International Publis

[復(fù)制鏈接]
查看: 7780|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:36:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems
編輯Valentin Afraimovich,José António Tenreiro Machado
視頻videohttp://file.papertrans.cn/232/231475/231475.mp4
概述Presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, nonlinear dynamics in fluid and thermal dynamics, nonlinear geophysical dynamics, time-dela
叢書(shū)名稱Nonlinear Systems and Complexity
圖書(shū)封面Titlebook: Complex Motions and Chaos in Nonlinear Systems;  Valentin Afraimovich,José António Tenreiro Machado Book 2016 Springer International Publis
描述This book brings together 12 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
出版日期Book 2016
關(guān)鍵詞Bio-network Dynamics; Complex Network; Fluid Dynamics; Fluid-structure Interaction; Hamiltonian Systems;
版次1
doihttps://doi.org/10.1007/978-3-319-28764-5
isbn_softcover978-3-319-80418-7
isbn_ebook978-3-319-28764-5Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems影響因子(影響力)




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems被引頻次




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems被引頻次學(xué)科排名




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems年度引用




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems年度引用學(xué)科排名




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems讀者反饋




書(shū)目名稱Complex Motions and Chaos in Nonlinear Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:54:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:11:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:55:08 | 只看該作者
6#
發(fā)表于 2025-3-22 15:40:39 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:52 | 只看該作者
https://doi.org/10.1007/978-0-85729-256-8period-doubling cascade. The existence of homoclinic and heteroclinic orbits is rigorously proved, and a theoretical control technique for the extended chaos is proposed. The results are supported with the aid of simulations. Arbitrarily high-dimensional chaotic discrete-time dynamical systems can b
8#
發(fā)表于 2025-3-23 00:20:29 | 只看該作者
Anna Capietto,Peter Kloeden,Rafael Ortegawall in a 1D canal. This piston wall is assumed to be adiabatic (without internal degrees of freedom) and fluctuates owing to collisions with the two gases or solvents that it separates..If the pressures in the two semi-infinite reservoirs are equal, i.e., even if there is macroscopic equilibrium, t
9#
發(fā)表于 2025-3-23 03:41:24 | 只看該作者
https://doi.org/10.1007/978-3-642-32906-7ponding stability and bifurcation analysis for periodic motions are discussed. The bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are presented. Numerical illustration shows good agreement between the analytical and numerical results.
10#
發(fā)表于 2025-3-23 05:51:16 | 只看該作者
Angelo Luongo,Manuel Ferretti,Simona Di Ninoperiodic motions to chaos are presented. The stability and bifurcation of periodic motions are determined through eigenvalue analysis. Finally, the numerical results of periodic motions of the Duffing oscillator are illustrated to verify the analytical prediction. The method used herein is applicabl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸城市| 双城市| 贵港市| 华蓥市| 东海县| 延川县| 育儿| 鸡泽县| 盐边县| 扶风县| 绥棱县| 宜阳县| 土默特左旗| 贵德县| 息烽县| 霸州市| 天门市| 池州市| 泰州市| 广宗县| 广东省| 河北省| 泌阳县| 台南县| 贵南县| 泰州市| 兰溪市| 汶川县| 南通市| 永兴县| 集贤县| 肥东县| 南雄市| 浏阳市| 泸水县| 乐亭县| 桂林市| 海原县| 维西| 五河县| 阜新市|