找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Harmonic Splines, Periodic Quasi-Wavelets; Theory and Applicati Han-lin Chen Book 2000 Springer Science+Business Media Dordrecht 20

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:29:01 | 只看該作者
Theoretische Grundlagen und Einordnung,ral equation of the second kind (see [Ke], [GW], [KS1], [KS2], [Ya1], [Ya2], [Kr]).. ∈ [0,2π], where.. is a constant, .(., .) is a continuous function of . and ., with period 2π in each variable, .(.) and .(.) are continuous periodic functions.
12#
發(fā)表于 2025-3-23 15:07:15 | 只看該作者
The Application of Quasi-Wavelets in Solving a Boundary Integral Equation of the Second Kind,ral equation of the second kind (see [Ke], [GW], [KS1], [KS2], [Ya1], [Ya2], [Kr]).. ∈ [0,2π], where.. is a constant, .(., .) is a continuous function of . and ., with period 2π in each variable, .(.) and .(.) are continuous periodic functions.
13#
發(fā)表于 2025-3-23 20:39:36 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:45:50 | 只看該作者
,L?ndervergleich USA und Deutschland,Periodic problems appear in various physical phenomena and mathematics which motivate an extensive study of periodic multi-resolution analysis (see [Me], [NW], [PB], [PT1], [PT2], [CM], [PT3], [C2], [C8], [C9], [C10], [CLJ], [CLP] and [CP1]).
16#
發(fā)表于 2025-3-24 06:41:47 | 只看該作者
Periodic Quasi-Wavelets,In this section we introduce the so-called periodic orthonormal quasiwavelets. The kind of wavelet which we want to construct possesses orthonormality; the numbers of terms in the decomposition and reconstruction formulas are strictly limited, the localization is not emphasized, and such a kind of wavelet we call quasi-wavelets.
17#
發(fā)表于 2025-3-24 13:27:15 | 只看該作者
The Periodic Cardinal Interpolatory Wavelets,Periodic problems appear in various physical phenomena and mathematics which motivate an extensive study of periodic multi-resolution analysis (see [Me], [NW], [PB], [PT1], [PT2], [CM], [PT3], [C2], [C8], [C9], [C10], [CLJ], [CLP] and [CP1]).
18#
發(fā)表于 2025-3-24 16:35:51 | 只看該作者
https://doi.org/10.1007/978-3-663-08963-6he explicit expressions of the solution. So we need to construct approximating functions from the given conditions. For instance, the construction of conformal mappings is an important problem both in theoretical study and in practice in various areas, (see p.53, Note 1). In this regard we would lik
19#
發(fā)表于 2025-3-24 19:17:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:13:05 | 只看該作者
Klaus Laubenthalies for dealing with waste in and around urban areas: Waste-to-energy power plants (WTEs) and recycling. Chapters in this volume describe how these plants can be built within or near cities to transform the non-recycled residues of society into electricity and heat, and the recovery of metals using
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉黎县| 德兴市| 鹿泉市| 溆浦县| 山东省| 天水市| 麻阳| 吕梁市| 北海市| 西乌珠穆沁旗| 右玉县| 虞城县| 商都县| 通榆县| 静安区| 余庆县| 桑日县| 小金县| 松潘县| 休宁县| 铁岭县| 社会| 澄城县| 聂拉木县| 临夏市| 谷城县| 肇源县| 寿阳县| 盈江县| 遂溪县| 诏安县| 隆尧县| 临漳县| 清远市| 咸宁市| 乡宁县| 中江县| 沛县| 股票| 阿图什市| 新津县|