找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Data Modeling and Computationally Intensive Statistical Methods; Pietro Mantovan,Piercesare Secchi Book 2010 Springer-Verlag Milan

[復(fù)制鏈接]
樓主: Enkephalin
31#
發(fā)表于 2025-3-26 22:56:51 | 只看該作者
32#
發(fā)表于 2025-3-27 04:57:20 | 只看該作者
A parametric Markov chain to model age- and state-dependent wear processes,to the literature, it results that statisticians and engineers have almost always modeled wear processes by . increments models, which imply that future wear is assumed to depend, at most, on the system’s age. In many cases itseems to be more realistic and appropriate to adopts to chastic models whi
33#
發(fā)表于 2025-3-27 07:06:11 | 只看該作者
Case studies in Bayesian computation using INLA,model, for instance, time and space dependence or the smooth effect of covariates. Many well-known statistical models, such as smoothing-spline models, space time models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox models, and geostatistical models are latent Gaus
34#
發(fā)表于 2025-3-27 13:17:43 | 只看該作者
A graphical models approach for comparing gene sets,at are, somehow, functionally related. For example, genes appearing in a known biological pathway naturally define a gene set. Gene sets are usually identified from a priori biological knowledge. Nowadays, many bioinformatics resources store such kind of knowledge (see, for example, the Kyoto Encycl
35#
發(fā)表于 2025-3-27 17:06:32 | 只看該作者
Predictive densities and prediction limits based on predictive likelihoods,vation and the model parameter. Since, according to the likelihood principle, all the evidence is contained in the joint likelihood function, a predictive likelihood for the future observation is obtained by eliminating the nuisance quantity, namely the unknown model parameter. This paper focuses on
36#
發(fā)表于 2025-3-27 20:05:48 | 只看該作者
37#
發(fā)表于 2025-3-28 00:21:32 | 只看該作者
38#
發(fā)表于 2025-3-28 03:45:10 | 只看該作者
39#
發(fā)表于 2025-3-28 07:28:24 | 只看該作者
40#
發(fā)表于 2025-3-28 13:51:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦安县| 嘉荫县| 临夏市| 金阳县| 西宁市| 龙胜| 阳朔县| 乐都县| 黎平县| 孝昌县| 山东省| 会东县| 红安县| 若羌县| 绿春县| 桦南县| 永昌县| 宝兴县| 柳州市| 饶阳县| 泰顺县| 繁峙县| 峨边| 贵定县| 襄汾县| 久治县| 舞阳县| 额尔古纳市| 辽宁省| 峨眉山市| 洛阳市| 扬州市| 灯塔市| 成都市| 郓城县| 浮梁县| 色达县| 济阳县| 临城县| 中超| 刚察县|