找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Binary Number System; Algorithms and Circu Tariq Jamil Book 2013 The Author(s) 2013 CBNS.Complex Numbers.Computer Arithmetic.Comput

[復(fù)制鏈接]
樓主: antihistamine
21#
發(fā)表于 2025-3-25 03:50:17 | 只看該作者
22#
發(fā)表于 2025-3-25 09:38:37 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:31 | 只看該作者
Conversion Algorithms,he way, we’ll also describe how imaginary numbers can be converted into CBNS. Once the algorithms for conversion of real and imaginary parts of a complex number (whether integer, fraction, or floating point) are known, we’ll describe how a given complex number can be represented as single-unit binary string consisting of 0 and 1s.
24#
發(fā)表于 2025-3-25 16:26:05 | 只看該作者
Book 2013ter arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.
25#
發(fā)表于 2025-3-25 23:14:28 | 只看該作者
CDP-glycerol glycerophosphotransferase,ations will be very useful in the theoretical areas of computer architecture research, a complete working implementation of CBADP on a FPGA or an ASIC should be the ultimate goal of any researcher in this area.
26#
發(fā)表于 2025-3-26 00:45:25 | 只看該作者
Conclusion and Further Research,ations will be very useful in the theoretical areas of computer architecture research, a complete working implementation of CBADP on a FPGA or an ASIC should be the ultimate goal of any researcher in this area.
27#
發(fā)表于 2025-3-26 08:03:18 | 只看該作者
28#
發(fā)表于 2025-3-26 10:54:06 | 只看該作者
29#
發(fā)表于 2025-3-26 16:07:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:34:49 | 只看該作者
Arithmetic Circuits Designs,le Gate Arrays (FPGAs). This chapter includes design information for a nibble-size (four bits) adder, subtractor, multiplier, and divider circuits utilizing CBNS for representation of complex numbers. The implementation and performance statistics related to these circuits are also presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克拉玛依市| 翼城县| 昭通市| 溧阳市| 南溪县| 岗巴县| 阜康市| 扶沟县| 娱乐| 黑水县| 仁怀市| 灵石县| 朝阳区| 固始县| 山丹县| 宝山区| 内江市| 台前县| 石棉县| 伊宁县| 微山县| 扶绥县| 耒阳市| 西安市| 米泉市| 高阳县| 修武县| 平遥县| 天峨县| 青岛市| 尤溪县| 疏附县| 玛纳斯县| 顺平县| 浦北县| 华亭县| 嫩江县| 余庆县| 兴义市| 裕民县| 汕头市|