找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Sets; E. M. Chirka Book 1989 Kluwer Academic Publishers 1989 Complex analysis.Dimension.Divisor.algebraic varieties

[復制鏈接]
樓主: Combat
11#
發(fā)表于 2025-3-23 10:59:24 | 只看該作者
Fundamentals of the Theory of Analytic Sets, U.: |z.| < r, counted with multiplicities. Then f can, in a certain neighborhood U = U’ × U. ? V of the coordinate origin in ?., be represented in the form . where the functions c.(z’) are holomorphic in U’, while ? is holoniorphic and zero free in U.
12#
發(fā)表于 2025-3-23 16:45:30 | 只看該作者
Tangent Cones and Intersection Theory,ne with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of secants of . passing through .; it is the set of limit points of the family of sets .(. ? .) = {.(. ? .):. ∈ .} as .→∞. If . ? ē then, by definition, the set . (., .) is empty.
13#
發(fā)表于 2025-3-23 21:35:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:56:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:58 | 只看該作者
Tangent Cones and Intersection Theory,uch that . → . and . (. ? .) → ν as .→ ∞. The set of all such tangent vectors is denoted by .(., .) and is called the . to . at .. This really is a cone with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of
16#
發(fā)表于 2025-3-24 10:33:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:06:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:30 | 只看該作者
0169-6378 in the purely algebraic language of ideals in commutative algebras..In the present book I have tried to eliminate this noncorrespondence and to give a geometri978-94-010-7565-7978-94-009-2366-9Series ISSN 0169-6378
19#
發(fā)表于 2025-3-24 19:30:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:58 | 只看該作者
Metrical Properties of Analytic Sets,ally define in .Ω the operation of multiplication by a complex number ((. + .). = . +.), and complex conjugation Σ{.(?/?.)+.(?/?.) ? Σ{.(?/?.)?.(?/?.) (in .Ω the operator Σ.(?/?.) ? Σ?.(?/?.) corresponds to it; do not confuse it with the corresponding operation in ?.Ω!). Hermiticity of .(.,.′) means
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平远县| 大连市| 五大连池市| 饶河县| 报价| 阳城县| 昆山市| 府谷县| 峨边| 冀州市| 宕昌县| 石棉县| 格尔木市| 玉屏| 舞钢市| 桦南县| 开化县| 公主岭市| 宜章县| 包头市| 高雄市| 巍山| 南城县| 湖州市| 洪洞县| 友谊县| 开平市| 中超| 石景山区| 夹江县| 苏尼特左旗| 壶关县| 滨州市| 滦南县| 全州县| 体育| 修文县| 岢岚县| 杨浦区| 阳东县| 左贡县|